Spelling suggestions: "subject:"[een] POLYCARBONATE"" "subject:"[enn] POLYCARBONATE""
51 |
Etude du vieillissement des disques optiques numériques : recherche de corrélations entre évolution des constituants et perte de l’information / Study of the ageing of digital optical discs : research into correlations between the evolution of components and the loss of informationCollin, Steeve 20 September 2013 (has links)
Les disques optiques numériques sont utilisés par de nombreux organismes, publics ou privés, pour l’archivage de données. Malgré les espoirs fondés dans l’utilisation de ces supports, des pertes d’information ont été observées, parfois après seulement quelques années d’archivage. Cette évolution a été attribuée au vieillissement des disques, sans préjuger des constituants impliqués. Ce travail de thèse visait à identifier les modifications chimiques et physiques résultant de l’application de différentes contraintes (photochimique, thermique ethydrolytique) sur des constituants de disques optiques : substrats de CD-R en polycarbonate, couches enregistrables de types « phtalocyanine » et « azoïque » et vernis de protection. L’étude de ce dernier constituant a permis d’élargir les recherches au cas du Blu-ray Disc. Ces évolutions physico-chimiques ont ensuite été corrélées à des variations des paramètres analogiques et numériques de disques soumis aux mêmes contraintes. L’objectif ultime de ce travail était de mettre en place une méthodologie générale permettant de comprendre l’origine de la perte d’information de disques optiques numériques exposés à des contraintes. / Optical discs are often used by many private or public organizations to archive essential data. For a long time these media were supposed to be reliable. However, a loss of the stored data was highlighted, sometimes only after a few years of storage. This degradation was attributed to the discs ageing, without any identification of the materials involved in this ageing. This work aimed to determine the chemical and physical modifications resulting from the application of different stresses (photochemical, thermal and hydrolytic) on the materials used in optical discs : the CD-R polycarbonate substrates, the recording layers based on phthalocyanines and azo compounds, and the protective layers. The study of this last component allowed us to extend the researches to the case of the Blu-ray Disc. These physico-chemical modifications were then correlated to variations in digital and analog parameters of discs submitted to the same stresses. The ultimate objective of this work was to propose a general method that could help to understand the origin of the loss of information of optical discs submitted to stresses.
|
52 |
Élaboration d’un revêtement dense et protecteur sur polycarbonate / Synthesis of a dense and protective coating on polycarbonateLionti, Krystelle 21 November 2012 (has links)
Ce travail s’intéresse a la synthèse et à la caractérisation de revêtements hybrides O/I à base de silice, préparés par voie sol-gel et déposés sur polycarbonate (PC), pour des applications en milieu chaud et humide dans le domaine culinaire. Le PC étant connu pour sa sensibilité à l’hydrolyse dans ce type de milieux (provoquant sa dépolymérisation progressive et ainsi la libération de bisphénol A, molécule suspectée comme étant toxique), le rôle du revêtement est donc de protéger le PC et d’éviter son vieillissement prématuré, tout en améliorant ses propriétés mécaniques. Dans un premier temps, de nombreux sols ont été synthétisés et optimisés, principalement en termes de nature et quantités de précurseurs, et de pH, dans le but d’obtenir des revêtements homogènes et transparents. Un suivi des réactions d’hydrolyse et de condensation des sols a également été réalisé afin de déterminer le temps minimal de maturation de ces derniers. Apres dépôt des revêtements par dip-coating, les propriétés mécaniques des films ont été étudiées par de nombreuses techniques. D’un point de vue général, les propriétés des échantillons revêtus ont été trouvées supérieures à celles du PC nu. L’influence de nombreux paramètres de synthèse comme le ratio organoalcoxysilane(s)/silice colloïdale, l’ajout d’additifs, le type de traitement de surface du PC pré-dépôt ou encore les conditions de recuit, a également été étudiée. L’ensemble de ce travail a permis d’obtenir, à partir de deux systèmes sol-gel différents, des revêtements performants en termes de transparence, d’adhésion au substrat, de non-toxicité, couplés à des valeurs élevées de dureté, de densité et de module de Young / This work deals with the synthesis and the characterization of hybrid O/I silica coatings prepared by the sol-gel route and deposited on polycarbonate (PC), for applications in hot and humid environment in the alimentary field. PC is well-known for undergoing hydrolysis in such conditions (causing its progressive depolymerization and thus leading to the release of bisphenol A, a molecule suspected to be toxic): the function of the coating would thus consist in preventing PC from this kind of premature ageing, along with the enhancement of its mechanical properties. As a first step, a lot of different sols were synthesized and optimized, mainly in terms of type and quantity of precursors, along with the pH, in order to obtain transparent and homogeneous coatings. The hydrolysis and condensation reactions were monitored in order to determine the minimum ageing time to be waited before any film deposition. After deposition by dip-coating, the mechanical properties of the films were assessed by using many different techniques. Basically, the coated-PC samples display higher properties than the uncoated one. The influence of numerous synthesis parameters such as the organoalkoxysilanes/colloidal silica ratio, the presence of additives, the kind of surface treatment of PC before film deposition, or the annealing conditions was also studied. This whole work led to the synthesis, from two different sol-gel systems, of superior quality coatings in terms of transparency, adherence to the substrate, non-toxicity, along with elevated hardness, density and Young’s modulus values
|
53 |
joining polycarbonate – manufacturing and evaluation of transparent joints using an innovative objective test methodHofmann, Karoline 05 December 2017 (has links) (PDF)
Large-scale laminated safety glass is increasingly used in the public and private sector for example museums, jewelers or villas.
Special safety is provided by these glasses in layered combination with polycarbonate sheets. Due to the low weight and its high tensile elongation comparing glass of the same thickness, highly transparent polycarbonate is suitable for safety-relevant components.
Because of the dimensional limitation in the extrusion process, joining polycarbonate compounds are necessary for large-area joint of this laminated safety glass. According to the present state of the art, a transparent weld joint of polycarbonate is not possible. Within the scope of the project, polycarbonate joints were produced by infrared welding and adhesive bonding. The transparency of the joints was realized by varying the process parameters, for example the heating time.
Additionally the present study focusses on a new innovative light intensity measurement, because conventional optical test methods can only subjectively assess the transparency and quality of the compound and the welding seam. The principle is based on the transmission of the welded and polished polycarbonate sample by means of a laser and the measurement of the current at the connected photoelectric cell, which is proportional to the intensity of the laserlight. This enables a qualitative evaluation of the joining dimension and -quality such as structural changes over the entire sample width. The results of this objective method correlate with the width of the stress distribution around the joining level, which are made visible with the photoelasticity using a polariscope and thus contribute to a better process understanding.
|
54 |
Propriétés barrières de films de polycarbonate modifiés par plasma froid, par dispersion de charges et par mélanges de polymères. / Barrier properties of polycarbonate films modified by cold plasma, by filler dispersion and by polymer blendsDiawara, Bassidi 21 October 2019 (has links)
L’objectif de ce travail de thèse a été d’améliorer les propriétés barrière du polycarbonate (PC), polymère rigide et transparent utilisé dans l’industrie automobile comme matériau pour phares de voiture. Le PC est le siège de transferts de molécules de gaz et vapeurs provenant de l’intérieur et/ou de l’extérieur des optiques et également de migration de petites espèces (monomères, additifs) au sein de la matière elle-même. Ces phénomènes amènent souvent une perte de transparence du PC et d’autant plus avec la technologie LED qui ne dissipe pas la condensation. Pour y remédier, nous avons utilisé trois approches différentes permettant d’accroître la résistance au transfert des matériaux, à commencer par le traitement de surface par plasma froid afin de déposer sur le substrat de PC une couche barrière organosiliciée. La polymérisation de cette couche est effectuée en mélangeant du dioxygène avec un précurseur organosilicié : l’hexaméthyldisiloxane (HMDSO), le 2,4,6,8-tétraméthylcyclotétrasiloxane (TMCTS) ou le triéthoxyfluorosilane (TEOFS). Les autres approches axées sur les mélanges et l’incorporation de charges ont consisté à élaborer d’une part des micr/nano composites de PC/mica et de l’autre des mélanges de polymères PC/poly(m-xylène adipamide) (MXD6) et enfin le mélange chargéPC/MXD6/mica. Ces films ont été préparés à l’aide d’une extrudeuse bis-vis équipée d’éléments mélangeurs ayant pour but d’améliorer la qualité de mélange de dispersion de la matière. L’ensemble des matériaux obtenus a été caractérisé afin d’établir des relations de structure/morphologie/propriétés. Le dépôt par plasma a permis non seulement d’augmenter la résistance thermique du PC, mais aussi d’accroître son effet barrière à l’eau mais surtout aux gaz (N₂, O₂ et CO₂). L’efficacité du traitement plasma vis-à-vis de l’eau est fortement dépendante du caractère hydrophile du dépôt et de sa densité. Si les composites PC/mica élaborés avec les mélangeurs sont plus barrière à l’eau qu’aux gaz, les mélanges PC/MXD6 sont au contraire bien plus efficaces vis-à-vis des gaz que de l’eau. Ainsi l’ajout du mica à faible taux dans le mélange PC/MXD6 a permis, par effet de piégeage, d’accroître davantage la résistance à l’eau du mélange tout en maintenant des bonnes propriétés barrière aux gaz. Outre les effets barrière obtenus, nous avons réussi, par l’utilisation des éléments mélangeurs, à augmenter la stabilité thermique du PC et à conserver la transparence des films de PC/mica, PC/MXD6 et PC/MXD6/mica. / The aim of the present thesis is to improve the barrier properties of polycarbonate (PC), a stiff and transparent polymer used in automotive industry as material for car headlights. PC represents a place of transfer of gas molecules and vapors coming from inside and/or outside the optics and also of migration of small species (monomers, additives) within the material itself. These phenomena often lead to a loss of the PC transparency, especially with the LED technology which does not allow the condensation dissipation. In order to overcome this limitation, three different approaches allowing the increase of materials transfer resistance were chosen. The first approach consists in the cold plasma surface treatment in order to obtain a barrier organosilicon layer on the PC substrate. This layer is obtained using a mixture of oxygen with an organosilicon precursor : hexamethyldisiloxane (HMDSO), 2,4,6,8-tetramethylcyclotetrasiloxane (TMCTS) or triethoxyfluorosilane (TEOFS). The other approaches focused on the incorporation of fillers and polymer blends permit the elaboration of micro/nano-composites of PC/mica, PC/poly(m-xylene adipamide) (MXD6) polymer blends and charged PC/MXD6/mica blends. These films were prepared using a double-screw extruder equipped with mix elements allowing the improvement of the quality and dispersion of the blend. The physico-chemical characterization of the obtained materials highlights the structure/morphology/properties relationship. The plasma deposition allows an increase of the PC thermal resistance as well as its barrier properties toward water and especially gas (N₂, O₂ and CO₂). The efficiency of the plasma treatment toward water molecules strongly depends on the layer hydrophilicity and density. PC/mica composites elaborated with mix elements are found to be more barrier toward water than toward gas, while PC/MXD6 blends are more efficient toward gas than water. Thus, the addition of low mica contents in the PC/MXD6 blend allowed to further increase the water resistance of the blend by trapping effect, while maintaining its high barrier properties toward gas. In addition, an increase of the PC thermal stability and a presevation of the transparency of PC/mica, PC/MXD6 and PC/MXD6/mica films were revealed using mix elements.
|
55 |
On initiation of chemically assisted crack growth and crack propagation paths of branching cracks in polycarbonateHejman, Ulf January 2010 (has links)
Stress corrosion, SC, in some cases gives rise to stress corrosion cracking, SCC, which differs from purely stress intensity driven cracks in many aspects. They initiate and grow under the influence of an aggressive environment in a stressed substrate. They grow at low load and may branch. The phenomenon of SCC is very complex, both the initiation phase and crack extension itself of SCC is seemingly associated with arbitrariness due to the many unknown factors controlling the process. Such factors could be concentration of species in the environment, stress, stress concentration, electrical conditions, mass transport, and so on.In the present thesis, chemically assisted crack initiation and growth is studied with special focus on the initiation and branching of cracks. Polycarbonate plates are used as substrates subjected to an acetone environment. Experimental procedures for examining initiation and branching in polycarbonate are presented. An optical microscope is employed to study the substrate.The attack at initiation is quantified from pits found on the surface, and pits that act as origin for cracks is identified and the distribution is analysed. A growth criterion for surface cracks is formulated from the observations, and it is used to numerically simulate crack growth. The cracks are seen to coalesce, and this phenomenon is studied in detail. Branching sites of cracks growing in the bulk of polycarbonate are inspected at the sample surface. It is found that the total width of the crack branches are approximately the same as the width of the original crack. Also, angles of the branches are studied. Further, for comparison the crack growth in the bulk is simulated using a moving boundary problem based algorithm and similar behaviour of crack branching is found. / <p>Both papers in thesis as manuscript, paper II with title "Branching cracks in a layered material - Dissolution driven crack growth in polycarbonate"</p>
|
56 |
The characterization of 3D printed plastics sterilized by hydrogen peroxide vapourSosnowski, Emil-Peter 05 January 2017 (has links)
3D printers that precisely fuse plastic filament are enabling medical manufacturers to produce high-quality plastic medical devices and implants. However, the low-temperature fusing process implies that post-production sterilization must also occur at a low temperature or destroy the precision of the product. This study characterizes the effects of hydrogen peroxide (H2O2) vapour sterilization on ASTM-compliant tensile samples of polylactic acid, polycaprolactone, and polycarbonate. The sterilization process caused physical deformations in polycaprolactone. Additionally, increases were observed in polycaprolactone and polycarbonate sample thickness, and in polycarbonate sample width. Decreases in E were found in all three materials, while UTS decreased in polycarbonate, and strain at UTS increased in polycaprolactone. The findings demonstrate that the materials can be compatible with H2O2 vapour sterilization, but products must be designed to accommodate for changes that occur due to sterilization. / February 2017
|
57 |
[en] EVALUATION OF REUSING AND/OR RECYCLING OF POLYCARBONETE USED IN AUTOMOTIVE SHIELDING / [pt] AVALIAÇÃO DA REUTILIZAÇÃO E/OU RECICLAGEM DO POLICARBONATO UTILIZADO EM BLINDAGENS AUTOMOTIVASDIOGO PIRES REIS 15 April 2015 (has links)
[pt] A indústria de blindagens, seja ela com finalidade civil ou militar, utiliza em
seu processo produtivo diversos materiais de interesse científico. A busca por
produtos cada vez mais leves e com melhor desempenho balístico tem sido tema
de estudos há vários anos. No entanto, pouco se tem observado em relação à
questão da preservação ambiental, seja no próprio ciclo de vida do material ou de
simples condutas responsáveis por parte dos fabricantes e consumidores. Sendo
assim, o objetivo desse trabalho foi avaliar a possibilidade de reutilização e/ou
reciclagem do policarbonato utilizado em blindagens automotivas e
arquitetônicas, observando se foram preservadas as características indispensáveis
para sua finalidade original, como transmitância, resistência à tração e resistência
ao impacto. Foram utilizadas amostras de policarbonato submetidas a diferentes
técnicas de separação do conjunto balístico original, a fim de observar a influência
da técnica de separação sobre as propriedades ópticas e mecânicas do
policarbonato. Também foi avaliado o comportamento do policarbonato após
repetidos ciclos de autoclavagem, já que esta técnica tem sido muito utilizada em
serviços de recuperação de vidros blindados delaminados. Para avaliar os efeitos
das técnicas de separação de autoclavagem, utilizaram-se as técnicas de
microscopia eletrônica de varredura, ensaio de tração, análise dinâmico-mecânica
e espectroscopia no ultravioleta e no visível. Os resultados demonstraram entre os
principais fatores que degradam o policarbonato podemos destacar a exposição
prolongada ao ultravioleta, exposição a solventes como álcool isopropílico e
acetona. / [en] The shield industry, for civil or military purposes, use in its process of
production, many different materials of scientific interest. The research for lighter
and better ballistic-performance products have been studied for many years.
However, not much have been observed in relation to the environmental
protection issue, whether it is in the own material life spam or simply, the
responsible behavior by manufacturers and consumers. Therefore, the goal of this
work was to measure the possibilities in reuse and/or recycling of polycarbonate
used in shielding for cars and architectonics, observing if the essential
characteristics were preserved to its original intent, like transmittance, tensile
strength and impact resistance. Polycarbonate samples were submitted to different
separation techniques from the original ballistic set, in order to observe the
influence of the separation technique over the optical and mechanical properties of
polycarbonate. It was also measured the polycarbonate s behavior after several
autoclaving cycles, since this technique has been very much used in the recovery
of delaminated shields. In order to measure the autoclaving separation techniques,
it was used surveillance of electronic microscopic techniques, tensile essay,
mechanical- dynamic analysis and visual ultra violet radiation spectroscopy. The
results have shown that among the main factors that degrade the polycarbonate it
is able to highlight the long-term exposition to ultra violet radiation, exposition to
isopropylic alcohol and acetone solvents.
|
58 |
Fabrication and characterization of electrospun alumina nanofibre reinforced polycarbonate compositesSun, Wenjun January 2017 (has links)
Fibres with ultra-high tensile strength have attracted unprecedented attention due to the rapidly increasing demand for strong fibre reinforced composites in various fields. However, despite a theoretical strength as high as around 46 GPa, current commercial alumina fibres only reach strength value of around 3.3 GPa because of the defects between the grains. Electrospinning provides a method to produce ceramic nanofibres with diameters reduced to nano-scale with effectively enhanced strength. Different calcination procedures were applied to study the morphology and crystal structure growth of alumina. Tested with a custom-built AFM-SEM system, the tensile strength of single crystal α-alumina nanofibres were found to have little dependence on diameter variations, with an average value of 11.4±1.1 GPa. While the strength of polycrystalline γ-alumina nanofibres were controlled by defects, showing a diameter dependent mechanism. Apart from the intrinsic properties of the fibre and matrix, the interface between them also plays an important role in determining composite mechanical properties. Collected by a rotating drum during electrospinning, aligned fibres were used to reinforce polycarbonate matrix for fabricating composite. The composite mechanical properties were successfully improved after surface modification with silane coupling agent. With a fibre volume fraction of around 7.5%, the composite strength doubled and the Young's modulus increased by a factor of 4 when compared with the pure polycarbonate. Apart from surface modification, the fibre/matrix interface can also be affected by transcrystallinity. Transcrystalline layers were formed in the alumina reinforced polycarbonate composites after annealing. Significant enhancement of the Young's modulus of the crystallized polycarbonate by a factor of 3 compared to the amorphous phase was measured directly using AFM based nanoindentation. Optimization of the Young's modulus is suggested as a balance between extending the annealing time to grow the transcrystalline layer and reducing the processing time to suppress void development in the PC matrix.
|
59 |
Avaliação da indução de cristalinidade de policarbonato / Evaluation of crystalline induction of polycarbonateFlavia Lucia Bottini Omena de Oliveira 02 July 2008 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / Neste trabalho foram investigados os comportamentos térmico e mecânico e as características morfológicas de amostras de policarbonato de bisfenol-A (PC) com cristalinidade induzida por exposição ao vapor de solvente. A técnica de indução de cristalização foi empregada em três amostras de policarbonato de bisfenol-A de diferentes massas molares. Filmes vazados a partir de soluções de PC em clorofórmio e amostras moldadas por compressão foram expostos a um ambiente contendo vapor de acetona. Os filmes foram expostos por diferentes períodos de tempo e analisados em equipamentos de Calorimetria Diferencial de Varredura, Microscopia Óptica com luz polarizada e Espectroscopia na Região do Infravermelho com Transformada de Fourier, para caracterizar a indução de cristalinidade. A indução de cristalinidade foi confirmada e a fase cristalina apresentou estrutura esferulítica. As amostras de maior massa molar mostraram maior teor de cristalinidade. O desempenho mecânico das amostras cristalinas de policarbonato mostrou diferenças, com a mudança de seu comportamento mecânico de dúctil para frágil, independente da massa molar / In this work were investigated the thermal and mechanical behaviors and the morphological characteristics of bisphenol-A polycarbonate (PC) samples with crystalline induction by solvent vapor exposure. The crystallization induction technique was employed on three samples of bisphenol-A polycarbonate of different molar mass. Films cast from PC solutions in chloroform and compression molded samples were exposed to an environment containing acetone vapor. The films were exposed for different periods of time and analyzed on Differential Scanning Calorimeter, Polarized Light Optical Microscope and Fourier Transform Infra Red devices to characterize crystalline induction. The crystalline induction was confirmed and the crystalline phase has presented spherulitic structure. The highest molar mass samples have shown higher crystallinity degrees. Mechanical performance of crystalline samples has shown differences with the change of its mechanical behavior from ductile to fragile, independently of the molar mass
|
60 |
Synthesis, Modification, Characterization and Processing of Molded and Electrospun Thermoplastic Polymer Composites and NanocompositesJulien, Tamalia 27 March 2018 (has links)
This dissertation focuses on the versatility and integrity of a novel, ultrasoft polycarbonate polyurethane (PCPU) by the introduction of nanoparticles and lithium salts. Additionally, the research takes into account the use of electrospinning as a technique to create PCPU and polyimide (PI) fibers. These polymers are of interest as they offer a wide range of properties and uses within the medical and industrial fields.
An industrial batch of an ultrasoft thermoplastic polyurethane (TPU) was synthesized using a two-step process. The first was to create an end capped pre-polymer from methylene bis (4-cyclohexylisocyanate), and a polycarbonate polyol made up of 1,6- hexanediol and 3-methyl-1,5-pentanediol. The second step was done by reacting the pre-polymer with an excess of the polycarbonate polyol with a chain extender, 1,4-butanediol. Biocompatibility testing such as USP Class VI, MEM Elution Cytotoxicity and Hemolysis toxicology reported that PCPU showed no toxicity. This novel type of polyurethane material targets growing markets of biocompatible polymers and has been used for peristaltic pump tubing, but also can be utilized as balloon catheters, enteral feeding tubes and medical equipment gaskets and seals. This material is ideal for replacing materials such as soft plastisols containing diethylhexyl phthalate for use in biomedical and industrial applications. After extensive characterization of this polymer system another dimension was added to this research.
The addition of nanoparticles and nanofillers to polyurethane can express enhanced mechanical, thermal and adhesion properties. The incorporation of nanoparticles such as nanosilica, nanosilver and carbon black into polyurethane materials showed improved tensile strength, thermal performance and adhesion properties of the PCPU. Samples were characterized using contact angle measurements, Fourier transform spectroscopy (FTIR), differential scanning calorimetry (DSC), parallel plate rheology and tensile testing.
The second chapter entails the fabrication and characterization of PCPU nanofibers and nanomembranes through a process known as electrospinning. The resulting PCPU nanomembranes showed a crystalline peak from the WAXS profile which is due to electrospun and solution strain induced crystallinity. The PCPU nanocomposite nanomembranes displayed increased thermal stability and an increase in tensile performance at higher weight percent. The nanomembranes were investigated using contact angle measurements, thermogravimetric analysis (TGA), DSC, WAXS, SAXS and tensile testing.
The final chapter focuses on investigating the rheological properties of PCPU/lithium electrolytes as well as transforming an unprocessable polyimide powder into a nanomembrane. The PCPU/ lithium composite electrolyte showed an increase in the activation energy and conductivity, while the PI/lithium showed increased conductivity over time. Dynamic mechanical analysis and four-point probe was used to investigate the samples.
|
Page generated in 0.1752 seconds