Spelling suggestions: "subject:"[een] POLYURETHANE"" "subject:"[enn] POLYURETHANE""
301 |
Biodegradation of bio-based plastics and anaerobic digestion of cavitated municipal sewage sludgeGomez Barrantes, Eddie Francisco January 2013 (has links)
No description available.
|
302 |
Production and Characterization of Crude Glycerol-Based Waterborne Polyurethanes and Their Derived Blend Films with ProteinTong, Xinjie 20 October 2014 (has links)
No description available.
|
303 |
TPU NANOCOMPOSITES WITH 1D AND 2D CARBONEOUS FILLERSYuan, Dian 03 June 2015 (has links)
No description available.
|
304 |
Prevention of Cathodic Delamination of Polyurethane Adhesive from Ti-6Al-4V Alloy Using Fluorinated PrimersGilpin, Andrew 26 May 2017 (has links)
No description available.
|
305 |
Prevention of Cathodic Delamination of Polyurethane from Titanium by Plasma Polymerized Silica/Aminosilane Primer SystemsHan, Bing 05 December 2017 (has links)
No description available.
|
306 |
MODEL FOR FLAME-RETARDANT POLYURETHANE FOAM MANUFACTURINGPowell, Cody Smith 30 August 2017 (has links)
No description available.
|
307 |
The Investigation of Water-Soluble Polyurethanes that Mimic Antimicrobial PeptidesMankoci, Steven Gerald 24 May 2018 (has links)
No description available.
|
308 |
INTEGRAL EPOXY RESIN-SILANE PRIMER SYSTEM FOR HOT-DIP GALVANIZED STEELSURYANARAYANAN, KARTHIK January 2005 (has links)
No description available.
|
309 |
LABORATORY-SCALE EVALUATION OF ARAMID BLEND MATERIAL AS A FIRE BARRIER FOR FLEXIBLE POLYURETHANE FOAMShang, Wei 30 May 2016 (has links)
No description available.
|
310 |
Rectified electroosmotic flow in microchannels using Zeta potential modulation – Characterization and its application in pressure generation and particle transportWu, Wen-I 04 1900 (has links)
<p>Microfluidic devices using electroosmotic flows (EOFs) in microchannels have been developed and widely applied in chemistry, biology and medicine. Advantages of using these devices include the reduction of reagent consumption and duration for analysis. Moreover the velocity profile of EOFs, in contrast to the parabolic profile found in pressure-driven flows, has a plug-like profile which contributes significantly less to solute dispersion. It also requires no valve to control the flow, which is done with the appropriate application of electrical potentials, thus becomes one of the favourite techniques for sample separation. However, high potentials of several hundred volts are usually required to generate sufficient EOF. These high potentials are not practical for general usage and could cause electrical hazard in some applications. One of the possible solutions is the introduction of zeta potential modulation. The EOF in a microchannel can be controlled by the zeta potential at the liquid/solid interface upon the application of external gate potentials across the channel walls. Combined with AC EOF, it can rectify the oscillating flows and generate pressure that can be used for microfluidic pumping applications. Since the flow induced by the alternating electric field is unsteady and periodic, it is critical to visualize the flow with high spatial and temporal resolutions in order to understand fluid dynamics. A novel method to obtain high temporal resolution for high frequency periodic electrokinetic flows using phase sampling technique in micro particle image velocimetry (PIV) measurements are first developed in order to characterize the AC electroosmotic flow. After that, the principle of zeta potential modulation is demonstrated to transport particles, cells, and other micro organisms using rectified AC EOF in open microchannels. The rectified flow is obtained by synchronous zeta-potential modulation with the driving potential in the microchannel. Subsequently, we found that PDMS might not be the best material for some pumping and biomedical applications as its hydrophobic surface property makes the priming process more difficult in small microchannels and also causes significant protein adsorption from biological samples. A more hydrophilic and biocompatible material, polyurethane (PU), was chosen to replace PDMS. A polyurethane-based soft-lithography microfabrication including its bonding, interconnect integration and in-situ surface modification was developed providing better biocompatibility and pumping performance. Finally, an electroosmotic pumping device driven by zeta potential modulation and fabricated by PU soft lithography was presented. The problem of channel priming is solved by the capillary force induced by the hydrophilic surface. Its flow rate and pressure output were found to be controllable through several parameters such as driving potential, gate potential, applied frequency, and phase lag between the driving and gate potentials.</p> / Doctor of Philosophy (PhD)
|
Page generated in 0.041 seconds