• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 154
  • 97
  • 59
  • 18
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 5
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 400
  • 400
  • 124
  • 115
  • 114
  • 98
  • 84
  • 75
  • 71
  • 61
  • 61
  • 60
  • 56
  • 53
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Characterization of Self-Consolidating Concrete for the Design of Precast, Pretensioned Bridge Superstructure Elements

Kim, Young Hoon 14 January 2010 (has links)
Self-consolidating concrete (SCC) is a new, innovative construction material that can be placed into forms without the need for mechanical vibration. The mixture proportions are critical for producing quality SCC and require an optimized combination of coarse and fine aggregates, cement, water, and chemical and mineral admixtures. The required mixture constituents and proportions may affect the mechanical properties, bond characteristics, and long-term behavior, and SCC may not provide the same inservice performance as conventional concrete (CC). Different SCC mixture constituents and proportions were evaluated for mechanical properties, shear characteristics, bond characteristics, creep, and durability. Variables evaluated included mixture type (CC or SCC), coarse aggregate type (river gravel or limestone), and coarse aggregate volume. To correlate these results with full-scale samples and investigate structural behavior related to strand bond properties, four girder-deck systems, 40 ft (12 m) long, with CC and SCC pretensioned girders were fabricated and tested. Results from the research indicate that the American Association of State Highway Transportation Officials Load and Resistance Factor Design (AASHTO LRFD) Specifications can be used to estimate the mechanical properties of SCC for a concrete compressive strength range of 5 to 10 ksi (34 to 70 MPa). In addition, the research team developed prediction equations for concrete compressive strength ranges from 5 to 16 ksi (34 to 110 MPa). With respect to shear characteristics, a more appropriate expression is proposed to estimate the concrete shear strength for CC and SCC girders with a compressive strength greater than 10 ksi (70 MPa). The author found that girder-deck systems with Type A SCC girders exhibit similar flexural performance as deck-systems with CC girders. The AASHTO LRFD (2006) equations for computing the cracking moment, nominal moment, transfer length, development length, and prestress losses may be used for SCC girder-deck systems similar to those tested in this study. For environments exhibiting freeze-thaw cycles, a minimum 16-hour release strength of 7 ksi (48 MPa) is recommended for SCC mixtures.
112

Seismic performance of flexible concrete structures /

Feghali, Habib Labib, January 1999 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1999. / Vita. Includes bibliographical references (leaves 256-262). Available also in a digital version from Dissertation Abstracts.
113

Development of a new spun concrete pole reinforced with carbon fiber reinforced polymer bars

Shalaby, Ashraf Mounir Mahmoud. January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2007. / Title from PDF title page (viewed Feb. 5, 2010). Additional advisors: Ashraf Al Hamdan, Wilbur A. Hitchcock, Jason T. Kirby, Talat Salama. Includes bibliographical references (p. 148-153).
114

Development of software architecture to investigate bridge security

Bui, Joeny Quan 04 March 2013 (has links)
After September 11, 2001, government officials and the engineering community have devoted significant time and resources to protect the country from such attacks again. Because highway infrastructure plays such a critical role in the public’s daily life, research has been conducted to determine the resiliency of various bridge components subjected to blast loads. While more tests are needed, it is now time to transfer the research into tools to be used by the design community. The development of Anti-Terrorism Planner for Bridges (ATP-Bridge), a program intended to be used by bridge engineers and planners to investigate blast loads against bridges, is explained in this thesis. The overall project goal was to build a program that can incorporate multiple bridge components while still maintaining a simple, user-friendly interface. This goal was achieved by balancing three core areas: constraining the graphical user interface (GUI) to similar themes across the program, allowing flexibility in the creation of the numerical models, and designing the data structures using object-oriented programming concepts to connect the GUI with the numerical models. An example of a solver (prestressed girder with advanced SDOF analysis model) is also presented to illustrate a fast-running algorithm. The SDOF model incorporates the development of a moment-curvature response curve created by a layer-by-layer analysis, a non-linear static analysis accounting for both geometric non-linearity as well as material non-linearity, and a Newmark-beta-based SDOF analysis. The results of the model return the dynamic response history and the amount of damage. ATP-Bridge is the first software developed that incorporates multiple bridge components into one user-friendly engineering tool for protecting bridge structures against terrorist threats. The software is intended to serve as a synthesis of state-of-the-art knowledge, with future updates made to the program as more research becomes available. In contrast to physical testing and high-fidelity finite element simulations, ATP-Bridge uses less time-consuming, more cost effective numerical models to generate dynamic response data and damage estimates. With this tool, engineers and planners will be able to safeguard the nation’s bridge inventory and, in turn, reinforce the public’s trust. / text
115

Behavior of the cast-in-place splice regions of spliced I-girder bridges

Williams, Christopher Scott 17 September 2015 (has links)
Spliced girder technology continues to attract attention due to its versatility over traditional prestressed concrete highway bridge construction. Relatively limited data is available in the literature, however, for large-scale tests of post-tensioned I-girders, and few studies have examined the behavior of the cast-in-place (CIP) splice regions of post-tensioned spliced girder bridges. In addition to limited knowledge on CIP splice region behavior, a wide variety of splice region details (e.g., splice region length, mild reinforcement details, cross-sectional geometry, etc.) continue to be used in the field. In response to these issues, the research program described in this dissertation was developed to (i) study the strength and serviceability behavior of the CIP splice regions of spliced I-girders, (ii) identify design and detailing practices that have been successfully implemented in CIP splice regions, and (iii) develop design recommendations based on the structural performance of spliced I-girder test specimens. To accomplish these tasks, an industry survey was first conducted to identify the best practices that have been implemented for the splice regions of existing bridges. Splice region details were then selected to be included in large-scale post-tensioned spliced I-girder test specimens. Two tests were conducted to study splice region behavior and evaluate the performance of the chosen details. The failure mechanisms of both test girders were characterized by a shear-compression failure of the web concrete with primary crushing occurring in the vicinity of the top post-tensioning duct. Most significantly, the girders acted essentially as monolithic members in shear at failure. Web crushing extended across much of the test span and was not localized within the splice regions. To supplement the spliced girder tests, a shear-friction experimental program was also conducted to gain a better understanding of the interface shear behavior between precast and CIP concrete surfaces at splice regions. The findings of the shear-friction study are summarized within this dissertation. Based on the results of the splice region research program, design recommendations were developed, including recommended CIP splice region details.
116

Short-term and time-dependent stresses in precast network arches

Yousefpoursadatmahalleh, Hossein 17 September 2015 (has links)
Due to their structural efficiency and architectural elegance, concrete arches have long been used in bridge applications. However, the construction of concrete arches requires significant temporary supporting structures, which prevent their widespread use in modern bridges. A relatively new form of arch bridges is the network arch, in which a dense arrangement of inclined hangers is used. Network arches are subjected to considerably smaller bending moments and deflections than traditional arches and are therefore suitable for modern, accelerated construction methods in which the arches are fabricated off-site and then transported to the bridge location. However, service-level stresses, which play a critical role in the performance of the structure, are relatively unknown for concrete network arches and have not been sufficiently investigated in the previous research on concrete arches. The primary objective of this dissertation is to improve the understanding of short-term and time-dependent stresses in concrete arches, and more specifically, concrete network arches. The research presented herein includes extensive field monitoring of the West 7th Street Bridge in Fort Worth, Texas, which is the first precast network arch bridge and probably the first concrete network arch bridge in the world. The bridge consists of twelve identically designed concrete network arches that were precast and post-tensioned before they were transported to the bridge site and erected. A series of vibrating wire gages were embedded in the arches and were monitored throughout the construction and for a few months after the bridge was opened to traffic. The obtained data were processed, and structural response parameters were evaluated to support the safe construction of the innovative arches, identify their short-term and time-dependent structural behavior, and verify the modeling assumptions. The variability of stresses among the arches was also used to assess the reliability of stress calculations. The results of this study provide valuable insight into the elastic, thermal, and time-dependent behavior of concrete arches in general and concrete network arches in particular. The knowledge gained in this investigation also has broader applications towards understanding the behavior of indeterminate prestressed concrete structures that are subjected to variable boundary conditions and thermal and time-dependent effects.
117

On The Development Of The Extradosed Bridge Concept

Stroh, Steven Lynn 01 January 2012 (has links)
The Extradosed Prestressed Bridge represents a relatively new bridge type. The first of this type bridge was constructed in Japan in 1994, and Japan has since built at least 29 examples of this bridge type. Throughout the rest of the world, another 34 of this bridge type have been built, with most countries having only one, or at most a few, examples. A broader application of this bridge type has been hampered by lack of design information and in particular lack design criteria for the stay cables. The purpose of this dissertation is to progress the understanding and application of this bridge type by providing (1) a summary and discussion of extradosed bridges constructed worldwide, (2) an assessment and recommendations on proportioning parameters, characteristics and features of extradosed prestressed bridges, and (3) a contribution of a new design approach for the stay-cable design for extradosed prestressed bridges. Also presented is an application of the above to a real-world prototype design to assess and comment on the application of the recommended proportioning parameters, characteristics, features and the new approach to stay cable design criteria.
118

Shear behavior of prestressed concrete U-beams

Moore, Andrew Michael, 1984- 14 February 2011 (has links)
An experimental study was conducted at the Ferguson Structural Engineering Laboratory in order to investigate the shear behavior of 54-inch deep prestressed concrete U-beams. The primary goal of this research was to improve the design and detailing of the skewed end-blocks commonly used in these beams. As U-beams had been in service for several decades without incident, it was anticipated that there would be little need for change in the design, and the findings of the research would involve a slight tweaking to improve the overall performance. Unfortunately, during the first phase of shear testing (testing of the current design standard) it was found that the U-beam was not reaching the code calculated shear capacity. During this phase of testing the premature failure mechanism was isolated as the breakdown of the web-to-flange interface in the end region of the girder. Therefore, the second phase of testing sought to prevent the breakdown of this boundary by three options: (1) increasing the web width while maintaining current levels of mild reinforcement, (2) increasing the web width while also increasing the amount of reinforcement crossing the web-to-flange boundary, or (3) by increasing the amount of reinforcement at the boundary while maintaining the current web width. Two acceptable solutions to the premature failure method were developed and tested during this phase both of which included an increase in the amount of mild reinforcement crossing the web-to-flange interface (with and without an increase in web width). The research into refining of these new details is ongoing as part of the Texas Department of Transportation’s Research Project number 0-5831. / text
119

Behavior of stiffened compression flanges of trapezoidal box girder bridges

Herman, Reagan Sentelle 15 March 2011 (has links)
Not available / text
120

Shear database for prestressed concrete members

Nakamura, Eisuke 07 July 2011 (has links)
Development of shear databases attracted a great deal of attention in the shear research community within the last decade. Although a few shear databases have already been developed by several research groups, there is no comprehensive shear database that is focused on prestressed concrete members. This thesis aims to develop a shear database for prestressed concrete members with an intensive literature review. This literature review resulted in a database that contained a total of 1,696 tests reported in North America, Japan, and Europe from 1954 to 2010. The database was used to evaluate shear design provisions available in North America, Japan, and Europe. The variations in measured versus calculated shear strength using twelve shear design equations were analyzed. The analysis results indicated that design expressions based on the Modified Compression Filed Theory (MCFT) produced the best performance to estimate the shear strength of prestressed concrete members with sufficient shear reinforcement. The MCFT-based design expressions, however, provided unconservative strength estimations for members that failed in shear but exhibited signs of horizontal shear damage and/or anchorage zone distress. The ACI 318-08 detailed method was found to be less conservative than the MCFT-based design expressions. Additionally, on the basis of a careful examination of test results included in the database, a new limit for the minimum shear reinforcement was proposed. The database was also used to investigate the shear behavior of prestressed concrete members. This investigation revealed that there was no evidence of size effect in the shear strength of prestressed concrete members with sufficient shear reinforcement. Additionally, it was found that prestress force and shear reinforcement increased the shear strength although there was an upper limit on the effectiveness of shear reinforcement. / text

Page generated in 0.0455 seconds