Spelling suggestions: "subject:"[een] PRODUCTION PREDICTION"" "subject:"[enn] PRODUCTION PREDICTION""
1 |
Multiscale factors that control hydrocarbon storage capacity, and successful hydrofracturing and refracturing in mudrocksHaider, Syed 11 1900 (has links)
Hydrocarbon production from mudrocks (“shales”) is vital to global economic growth and smooth transition to a clean energy infrastructure. The commercial development prospect of a shale play depends on its evolution history over millions of years. Economic hydrocarbon production from shale starts after hydraulic fracturing, that creates a multiscale fracture network leading to an increased overall permeability. The properties of the stimulated rock can be assessed via parameters at different scales (nano-, micro- and macro-scale). Better understanding of these parameters is the key to predicting well productivity and profitability.
This work aims to deepen the understanding of the multiscale parameters that define effective hydraulic fracturing. To investigate permeability increase in shales, we start with a model of micro-capillary in contact with nanopores . We show that the nanopores that discharge gas into a fracture network in the source rock significantly increase and extend gas flow into the hydrofractured horizontal wells. We then use a fractal stimulated reservoir volume model to match production histories of 45 Barnett gas wells and to quantify connectivity between the nanopores and the fracture network. This model relies on a source term, ${s}$, and fracture permeability $k_f$ . Our analysis shows that the different degrees of coupling between ${s}$ and $k_f$ create distinctly different types of fracture networks after rock stimulation and impact the well production profiles. We then couple the fractal SRV model with universal scaling $τ − M$ model to simulate production history of 1000 wells each in the Barnett, Marcellus, Haynesville and Eagle Ford shale plays. The analysis shows the coupled effect of stimulated surface area $A$, fracture half-distance, $d$, and the fractal dimension ,$D$, on production and economics of gas production. These parameters define the key differences between different shale plays in the US. Finally, we simulate microfracturing associated with hydrocarbon expulsion in the Tuwaiq Mountain source rock, Saudi Arabia, and propose the pore/microchannel blocking by bitumen/pyrobitumen as a viable mechanism of sustaining the high pore pressure in the source rock for millions of years.
|
2 |
[en] MACHINE LEARNING STRATEGIES TO PREDICT OIL FIELD PERFORMANCE AS TIME-SERIES FORECASTING / [pt] PREDIÇÃO DA PERFORMANCE DE RESERVATÓRIOS DE PETRÓLEO UTILIZANDO ESTRATÉGIAS DE APRENDIZADO DE MÁQUINA PARA SÉRIES TEMPORAISISABEL FIGUEIRA DE ABREU GONCALVES 19 June 2023 (has links)
[pt] Prever precisamente a produção de óleo é essencial para o planejamento e
administração de um reservatório. Entretanto, prever a produção de óleo é um
problema complexo e não linear, devido a todas as propriedades geofísicas que
com pequenas variações podem resultar em differentes cenários. Além disso,
todas as decisões tomadas durante a exploração do projeto devem considerar
diferentes algoritmos para simular dados, fornecer cenários e conduzir a boas
deduções. Para reduzir as incertezas nas simulações, estudos recentes propuseram o uso de algoritmos de aprendizado de maquina para solução de problemas
da engenharia de reservatórios, devido a capacidade desses modelos de extrair
o maxiomo de informações de um conjunto de dados. Essa tese propôe o uso
ed duas tecnicas de machine learning para prever a produção diaria de óleo
de um reservatório. Inicialmente, a produção diária de óleo é considerada uma
série temporal, é pré-processada e reestruturada como um problema de aprendizado supervisionado. O modelo Random Forest, uma extensão das arvores
de decisão muito utilizado em problemas de regressão e classificação, é utilizado para predizer um passo de tempo a frente. Entretanto, as restrições dessa
abordagem nos conduziram a um modelo mais robusto, as redes neurais recorrentes LSTM, que são utilizadas em varios estudos como uma ferramenta dee
aprendizado profundo adequada para modelagem de séries temporais. Várias
configurações de redes LSTM foram construidas para implementar a previsão
de um passo de tempo e de multiplos passos de tempo, a pressão do fundo de
poço foi incorporada aos dados de entrada. Para testar a eficacia dos modelos propostos, foram usados quatro conjunto de dados diferentes, três gerados
sintéticamente e um conjunto de dados reais do campo de produção VOlve,
como casos de estudo para conduzir os experimentos. Os resultados indicam
que o Random Forest é suficiente para previsões de um passo de tempo da
produção de óleo e o LSTM é capaz de lidar com mais dados de entrada e
estimar multiplos passos de tempo da produção de óleo. / [en] Precisely forecasting oil field performance is essential in oil reservoir planning and management. Nevertheless, forecasting oil production is a complex
nonlinear problem due to all geophysical and petrophysical properties that may
result in different effects with a bit of change. Thus, all decisions to be made
during an exploitation project must consider different efficient algorithms to
simulate data, providing robust scenarios to lead to the best deductions. To
reduce the uncertainty in the simulation process, recent studies have efficiently
introduced machine learning algorithms for solving reservoir engineering problems since they can extract the maximum information from the dataset. This
thesis proposes using two machine learning techniques to predict the daily oil
production of an offshore reservoir. Initially, the oil rate production is considered a time series and is pre-processed and restructured to fit a supervised
learning problem. The Random Forest model is used to forecast a one-time
step, which is an extension of decision tree learning, widely used in regression and classification problems for supervised machine learning. Regardless,
the restrictions of this approach lead us to a more robust model, the LSTM
RNN s, which are proposed by several studies as a suitable deep learning technique for time series modeling. Various configurations of LSTM RNN s were
constructed to implement single-step and multi-step oil rate forecasting and
down-hole pressure was incorporated to the inputs. For testing the robustness
of the proposed models, we use four different datasets, three of them synthetically generated and one from a public real dataset, the Volve oil field, as a case
study to conduct the experiments. The results indicate that the Random Forest
model could sufficiently estimate the one-time step of the oil field production,
and LSTM could handle more inputs and adequately estimate multiple-time
steps of oil production.
|
3 |
[en] ANALYSIS OF THE ECONOMIC IMPACT OF THE OFFSHORE DEVELOPMENT / [pt] AVALIAÇÃO DO IMPACTO ECONÔMICO DO DESENVOLVIMENTO DA PRODUÇÃO OFFSHOREROGERIO JOSE RAMOS DE OLIVEIRA MAGALHAES 28 September 2007 (has links)
[pt] Alguns projetos típicos de explotação de petróleo em águas
profundas no
Brasil exigem que se adotem alternativas de menor custo de
desenvolvimento para
que possam ser viabilizados. Nesses casos, deve-se também
buscar reduzir o
tempo para o desenvolvimento da produção, incluindo a
perfuração de poços, o
sistema de coleta submarino e a instalação das unidades de
produção. Além disso,
esses projetos podem ser significativamente afetados pelo
regime fiscal vigente. É
importante salientar que projetos de desenvolvimento
offshore exercem um forte
impacto sócio-econômico no país, não só pela geração de
receita fiscal oriunda da
produção petrolífera como também pela geração de emprego e
renda no
suprimento de bens e serviços para o desenvolvimento da
produção. O presente
trabalho tem por objetivo analisar uma nova proposta de um
algoritmo de previsão
de produção e da viabilidade econômica dos campos offshore
baseado no regime
fiscal vigente. / [en] Some typical deep water offshore reservoirs in Brazil
requires the use some
less expensive alternatives in order to make them
economically attractive. In these
cases we also need to reduce the development time
including the perforation of
the fields, the under water collecting system and the
installation of the production
units. These projects can also very affected according
with the standing tax
structure. It is also important to enforce that that
offshore projects has a large
impact on the social-economics of the country, not only
for the generation of
revenue form the tax income but also because of the job
generation and for the
needs of goods and services from the surrounding region.
The present work has
the objective to analyze a new numerical production
algorithmic for offshore
fields and also economic viability of the offshore fields
based on the current tax
structure.
|
4 |
Time Series Decomposition using Automatic Learning Techniques for Predictive ModelsSilva, Jesús, Hernández Palma, Hugo, Niebles Núẽz, William, Ovallos-Gazabon, David, Varela, Noel 07 January 2020 (has links)
This paper proposes an innovative way to address real cases of production prediction. This approach consists in the decomposition of original time series into time sub-series according to a group of factors in order to generate a predictive model from the partial predictive models of the sub-series. The adjustment of the models is carried out by means of a set of statistic techniques and Automatic Learning. This method was compared to an intuitive method consisting of a direct prediction of time series. The results show that this approach achieves better predictive performance than the direct way, so applying a decomposition method is more appropriate for this problem than non-decomposition.
|
5 |
A confiança do consumidor como previsor da produção industrial: um modelo alternativoFerreira, Gabriel Goulart 25 May 2009 (has links)
Submitted by Gabriel Goulart Ferreira (gabrielggfsc@gmail.com) on 2017-08-24T21:23:43Z
No. of bitstreams: 1
FGV Dissert - Final.pdf: 1134356 bytes, checksum: bae808529697b0480d6465ae8534ccf7 (MD5) / Approved for entry into archive by GILSON ROCHA MIRANDA (gilson.miranda@fgv.br) on 2017-08-25T13:40:06Z (GMT) No. of bitstreams: 1
FGV Dissert - Final.pdf: 1134356 bytes, checksum: bae808529697b0480d6465ae8534ccf7 (MD5) / Made available in DSpace on 2017-08-31T12:51:18Z (GMT). No. of bitstreams: 1
FGV Dissert - Final.pdf: 1134356 bytes, checksum: bae808529697b0480d6465ae8534ccf7 (MD5)
Previous issue date: 2009-05-25 / This paper presents the analysis about the importance of the Consumer Confidence Indexes in the United States and the potential utilization of the Brazil’s similar index, the ICC FGV, to predict and track performance local economy. As practical result, this paper proposes a new alternative model to predict, in the short term, Monthly Industrial Production (PIM), a nationwide survey of industrial activity. / Esta dissertação apresenta análise sobre a importância dos indicadores de Confiança do Consumidor nos EUA e o potencial de utilização do indicador paralelo nacional, o ICC FGV, para previsão e acompanhamento do desempenho da economia brasileira. Como resultado prático, faz-se a proposição de novo modelo alternativo para previsão de curto prazo da PIM, Pesquisa Mensal Industrial do IBGE.
|
Page generated in 0.0582 seconds