Spelling suggestions: "subject:"[een] PROGRESSIVE COLLAPSE"" "subject:"[enn] PROGRESSIVE COLLAPSE""
1 |
Experimental and Analytical Assessment on the Progressive Collapse Potential of aReinforced Concrete BuildingBetit, Brett Alexander January 2021 (has links)
No description available.
|
2 |
PROGRESSIVE COLLAPSE OF FRAME BUILDINGSWood, Curtis James January 2018 (has links)
No description available.
|
3 |
Realistic Modeling of High Rise Structures subjected to Progressive CollapseStephen, D., Ye, J., Lam, Dennis January 2011 (has links)
No
|
4 |
Effect of column removal time on progressive collapse of high rise structuresStephen, O.D., Lam, Dennis, Toropov, V.V. January 2013 (has links)
No / Accepted for conference.
|
5 |
Simplified modeling of shear tab connections in progressive collapse analysis of steel structuresHeumann, Eric Michael, 1985- 02 November 2010 (has links)
Recent tragedies involving the collapse of several large and prominent buildings have brought international attention to the subject of progressive collapse, and the field of structural engineering is actively investigating ways to better protect structures from such catastrophic failures. One focus of these investigations is the behavior and performance of shear tab connections in steel structures during progressive collapse events. The shear tab, a simple connection, is typically modeled as a perfect pin in standard design, but in progressive collapse analysis, a much more accurate model of its true behavior and limits is required. This report documents the development of a simple yet accurate shear tab model and its use in understanding the behavior and limits of shear tab connections in column removal scenarios. Particular attention is paid to the connections’ axial force limit state, an aspect of behavior that is typically unimportant in standard design. / text
|
6 |
Modeling Progressive Collapse of Steel Composite Structures Using Commercial SoftwarePhillips, Trent J. 05 October 2021 (has links)
No description available.
|
7 |
Seismic Evaluation of Reinforced Concrete Columns and Collapse of BuildingsLodhi, Muhammad S. January 2012 (has links)
No description available.
|
8 |
Novo método para a avaliação do risco de colapso progressivo em edifícios de alvenaria estrutural / New method for assessment the risk of progressive collapse in masonry structural buildingsFelipe, Túlio Raunyr Cândido 03 February 2017 (has links)
O evento do colapso progressivo começou a ser estudado, principalmente, após o acidente do edifício Ronan Point, em 1968, na cidade de Londres. Esse acidente fez o meio técnico rever as considerações normativas, sobretudo de maneira a adicionar recomendações que visem minimizar os danos causados à estrutura quando sujeita a um dano acidental.Entretanto, tais recomendações não realizam a análise do risco da estrutura colapsar. Essas também não conseguem analisar medidas de robustez e vulnerabilidade, e nem determinar qual é o elemento chave para a estrutura. Desse modo, partindo desses questionamentos, o presente trabalho desenvolveu uma nova metodologia nomeada aqui de Risk Analysis of the Progressive Collapse (RAPC). Este procedimento fornece uma medida mais precisa dos riscos, através de uma abordagem que utiliza a Teoria da Confiabilidade Estrutural. Assim, é deduzida uma expressão para a determinação da probabilidade de colapso progressivo, bem como são definidos os coeficientes de importância e vulnerabilidade para identificar o(s) elemento(s) chave. O elemento chave é definido como o que apresenta a maior interseção entre vulnerabilidade e importância para o colapso estrutural. Essas formulações desenvolvidas na metodologia do RAPC são implementadas em Fortran. Para isso, a modelagem do edifício de alvenaria estrutural é feita utilizando o software DIANA®, no qual os esforços solicitantes são obtidos e utilizados como dados de entrada na análise de confiabilidade. Valores de probabilidades de falha individual por elemento, condicional e condicional dupla são calculados pelo First Order Reliability Method (FORM) e Importance Sampling Monte Carlo (ISMC) com auxílio do programa StRAnD. Um algoritmo em Fortran é implementado para acoplamento do DIANA® e StRAnD, além de mapear a probabilidade de falha dos elementos estruturais. Portanto, torna-se evidente que a identificação dos elementos mais vulneráveis, e do elemento chave em particular, é útil para abordagens diretas de concepção estrutural, tais como a melhoria da resistência local. Contudo, os coeficientes propostos também medem os efeitos dos procedimentos de projeto que conduzem à continuidade, ductilidade e redundância. Quando essas medidas trabalham para reduzir as probabilidades de propagação de dano ou colapso, isso se reflete nas vulnerabilidades de elementos eventualmente iniciando esses caminhos de falha. Sendo assim, conclui-se que a formulação do RAPC se mostra como uma ferramenta na determinação do risco do colapso progressivo nas estruturas. / The progressive collapse event began to be studied, mainly, after the accident of the Ronan Point building, at 1968, in the city of London. This accident caused the engineers review their normative considerations, mainly in order to add recommendations aimed at minimizing the damage to structure when subjected to abnormal loading. However, such recommendations do not perform the risk analysis of the structure to collapse. These also fail to analyze measures of robustness and vulnerability, and either determine which is the key element of the structure. Thus, leaving of these questions, the present work to develop a new methodology named here of Risk Analysis of the Progressive Collapse (RAPC). This procedure provides a more accurate measure of risks through an approach that uses Structural Reliability Theory. Thus, an expression is deduced for the determination of the probability of progressive collapse, as well as the importance and vulnerability coefficients are defined to identify the key element (or key elements). The key element is identified as the one presenting the largest intersection between vulnerability and importance to collapse.These formulations developed in the RAPC methodology are implemented in Fortran.For this, the structural masonry building modeling is done using the DIANA® software, in which the requesting efforts are obtained and used as input data in the reliability analysis. Probabilities values individual, conditional, and double conditional are calculated by the First Order Reliability Method (FORM) and Importance Sampling Monte Carlo (ISMC) using the StRAnD software. A Fortran algorithm is implemented for DIANA® and StRAnD coupling, besides mapping the probability of failure of the structural elements. Therefore, it is clear that identification of the most vulnerable elements, and of the key element in particular, is useful for direct design approaches to structural design, such as local resistance enhancements. However, the coefficients proposed herein also measure the effects of design procedures leading to continuity, ductility or redundancy. When these measures work to reduce probabilities of damage propagation or collapse, this is reflected in the vulnerabilities of elements eventually initiating these failure paths. Therefore, it is concluded that the formulation of RAPC is shown as an tool in determining the risk of progressive collapse in structures.
|
9 |
Etude expérimentale et numérique de la résistance à l'effondrement progressif de sous-assemblages poteaux-poutres en béton armé / Experimental and numerical investigation of the progressive collapse resistance of reinforced concrete beam-column sub-assemblagesZhao, Guoqiang 03 July 2019 (has links)
Au cours de leur durée de vie, les bâtiments importants sont susceptibles d’être soumis à des charges accidentelles, telles que des explosions ou des impacts. Evaluer leur stabilité vis-à-vis de charges traditionnelles statiques et sismiques ne suffit pas. Leurs performances structurelles liées à des scénarios d’effondrement progressif doivent également être examinées.L’étude de l’effondrement progressif est un problème dynamique. Malheureusement, les expériences sur le comportement des structures de génie civil dans des conditions dynamiques sont rares car difficiles à réaliser. Dans cette étude, des sous-assemblages poteaux-poutres en béton armé ont été testés sous chargement dynamique. Le chargement a consisté à placer une masse importante jouant le rôle de « charge morte » sur la colonne centrale d’un sous-assemblage simulant la liaison de 3 poteaux avec 2 poutres. Une pièce fusible jouant le rôle de support sous la colonne centrale est brutalement déverrouillée pour simuler la perte de portance soudaine de cette colonne. Le comportement dynamique et les dommages locaux causés à la structure ont été mesurés et étudiés. Le bâti de chargement et les dispositifs de support ont été conçus spécialement pour cet essai. La charge morte supérieure peut être modifiée et appliquées à différents spécimens. Les supports des colonnes latérales ont une rigidité horizontale contrôlée et sont conçus pour limiter la rotation de ces mêmes colonnes. Ainsi, les conditions aux limites des essais réalisés sont supposées être représentatives de situations réalistes. Au cours des essais, un laser a été installé sous la colonne centrale pour mesurer la vitesse de chute. Une caméra numérique rapide a été utilisée pour visualiser l'ensemble du processus de ruine du sous-assemblage. Les images obtenues de la caméra ont été traitées par une technique de DIC (Digital Image Correlation) afin d’obtenir le champs de déplacement et les déformations correspondantes. Grâce à ces mesures dynamiques, des données importantes ont été produites et enregistrées, notamment la période de vibration, la fréquence, la vitesse et le déplacement des différents échantillons testés. Sur la base de ces données expérimentales, l’effet de la section et de la portée des poutres sur la réponse dynamique et sur le mode d’endommagement des sous-assemblages a été discuté. Cette étude montre que les résultats expérimentaux obtenus, en termes de mécanismes structurels, de schéma de fissuration, de mode d'endommagement, peuvent être utilisés pour analyser le comportement de sous-assemblages de structures réelles.De plus, une modélisation numérique des essais a été réalisée pour simuler le processus de ruine de la structure. Une technique appelée «connecteur» a été proposée dans le modèle aux éléments finis du sous-assemblage poteaux-poutres. Cette technique consiste à ajouter une série de ressorts pour étudier le rôle de l’interaction entre les armatures en acier et le béton. Un modèle d'endommagement anisotrope, appelé modèle DFH-KST, a été utilisé pour caractériser l'évolution de la fissuration et l’endommagement du béton.La polyvalence de la méthodologie adoptée permet d’évaluer l’influence du comportement non-linéaire du matériau et celle de la géométrie de la structure testée. Les études numériques de calibration et de validation montrent que le modèle proposé peut reproduire le comportement et la résistance de la structure avec succès. / Important buildings may be subjected to accidental loads, such as explosions or impacts, during their service life. It is, therefore, necessary not only to evaluate their safety under traditional loads and seismic action. The structural performances related to progressive collapse scenarios need to be investigated.The study of progressive collapse involves a dynamic problem, but unfortunately dynamic experiments on the behavior of the civil engineering structures under dynamic conditions are rare. In this research, beam-column sub-assemblage specimens were tested under dynamic load. The loading program consists in placing a large mass, as a dead load, on the top of the middle column of a beam-column sub-assemblage. The support under the middle column is suddenly removed for simulating the sudden loss of a column and the damage that will result in the structure. The loading system and supporting devices were designed specially for this test. The upper dead load can be changed by increasing or decreasing the applied masse to different specimens. The supports for the side column have a controlled rigidity in the horizontal direction and are designed to restrain rotation of the side-column. Thus, the boundary conditions are supposed to be similar to real situations. During the test, a laser was installed under the middle pillar to collect the falling velocity and a high-speed camera was used to visualize the whole process of the component failure process. The images obtained from the camera were processed by Digital Image Correlation (DIC) technology to get the corresponding displacements and strain fields. By these means, all the information of the structure under dynamic loading was captured and recorded, such as the period of vibration, frequency, velocity and displacement. Based on these experimental data, the effect of section and span of the specimen on dynamic response and damage mode was discussed. Time history of resistance force curves was produced. Compared with previous published quasi-static experiments in terms of structural mechanisms, crack patterns, damage mode, it shows the experimental results from beam-column assemblage with the designed support device can be used to analyze the behavior of the local structure in the entire frame.In addition, numerical simulations were developed for simulating the failing process of the structure. A technique named “connector” was proposed into beam-column finite element model by adding a series of springs to investigate the interaction between steel rebars and concrete. A concrete damage model, named DFH-KST model, was used to characterize the development of concrete crack and damage. The versatility of the adopted methodology allows assessing the influence of the material nonlinear behavior and the geometry of the tested structure. Calibration and validation studies show that the proposed model can successfully represent the resistance of structure and behavior. Furthermore, the transverse component effect on the resistance to progressive collapse was discussed.
|
10 |
Structural response of steel and composite building frames further to an impact leading to the loss of a column.Luu Nguyen Nam, Hai 15 October 2009 (has links)
See appended files.
|
Page generated in 0.0409 seconds