• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 11
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 41
  • 41
  • 18
  • 12
  • 11
  • 11
  • 11
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation of Microstructural Effects in Rolling Contact Fatigue

Dallin S Morris (11185158) 30 July 2021 (has links)
<p>Rolling contact fatigue (RCF) is a common cause of failure in tribological machine components such as rolling-element bearings (REBs). Steels selected for RCF applications are subject to various material processes in order to produce martensitic microstructures. An effect of such material processing is the retention of the austenitic phase within the steel microstructure. Retained austenite (RA) transformation in martensitic steels subjected to RCF is a well-established phenomenon. In this investigation, a novel approach is developed to predict martensitic transformations of RA in steels subjected to RCF. A criteria for phase transformations is developed by comparing the required thermodynamic driving force for transformations to the energy dissipation in the microstructure. The method combines principles from phase transformations in solids with a damage mechanics framework to calculate energy availability for transformations. The modeling is then extended to incorporate material alterations as a result of RA transforming within the material. A continuum damage mechanics (CDM) FEM simulation is used to capture material deterioration, phase transformations, and the formation of internal stresses as a result of RCF. Crystal lattice orientation is included to modify energy requirements for RA transformation. Damage laws are modified to consider residual stresses and different components of the stress state as the drivers of energy dissipation. The resulting model is capable of capturing microstructural evolution during RCF.</p> <p>The development and stability of internal stresses caused by RA transformation in bearing steel material was experimentally investigated. Specimens of 8620 case carburized steel were subjected to torsional fatigue at specific stress levels for a prescribed number of cycles. X-ray diffraction techniques were used to measure residual stress and RA volume fraction as a function of depth in the material. A model is set forth to predict compressive residual stress in the material as a function of RA transformation and material relaxation. Modeling results are corroborated with experimental data. In addition, varying levels of retained austenite (RA) were achieved through varying undercooling severity in uniformly treated case carburized 8620 steel. Specimens were characterized via XRD and EBSD techniques to determine RA volume fraction and material characteristics prior to rolling contact fatigue (RCF). Higher RA volume fractions did not lead to improvement in RCF lives. XRD measurements after RCF testing indicated that little RA decomposition had occurred during RCF. The previously established RCF simulations were modified to investigate the effects of RA stability on RCF. The results obtained from the CDM FEM captured similar behavior observed in the experimental results. Utilizing the developed model, a parametric study was undertaken to examine the effects of RA quantity, RA stability, and applied pressure on RCF performance. The study demonstrates that the energy requirements to transform the RA phase is critical to RCF performance.</p>
12

Strain Path Effect on Austenite Transformation and Ductility in TBF 1180 Steel

Gibbs, Parker Kenneth 01 March 2019 (has links)
TBF 1180 steel was studied under various conditions focusing on the correlation of ductility and amount of retained austenite. Samples were prepared from sheet stock and then strained using limiting dome height tooling (LDH), a standard uniaxial test frame, and a tensile stage for use in an electron microscope. The steel was observed in plane, biaxial, and uniaxial strain to determine its effect on retained austenite transformation and ultimately, ductility. Retained austenite was observed using a scanning electron microscope (SEM) equipped with an electron backscatter detector (EBSD) to distinguish the different phases present. Initial austenite levels were around 5% by volume and was quickly reduced as the sample was strained. The biaxial samples were the slowest to transform, having about 2.5% austenite at .05 effective strain, which allowed the specimen to reach an effective strain of .3 with 1.1% austenite remaining. In contrast, the plane strain samples had the fastest rate of transformation having only 1.2% austenite at .05 effective strain and .7% austenite at a final effective strain of .18. Both forms of uniaxial, (in-situ and ex-situ), were near identical, as expected, and exhibited an austenite transformation curve between that of the plane and biaxial curves. The uniaxial austenite level at .05 strain was 2.1% and was able to reach about .15 strain with a final austenite percentage around 1%. It was concluded that the biaxial strain path had the greatest ductility due in part to its slower austenite transformation rate while plane and uniaxial strain paths were not as ductile with their faster austenite transformation rates.
13

Advanced High Strength Steel Through Paraequilibrium Carbon Partitioning and Austenite Stabilization

Qu, Hao January 2011 (has links)
No description available.
14

Improvement of the mechanical properties of TRIP-assisted multiphase steels by application of innovative thermal or thermomechanical processes

Georges, Cédric 28 August 2008 (has links)
For ecological reasons, the current main challenge of the automotive industry is to reduce the fuel consumption of vehicles and then emissions of greenhouse gas. In this context, steelmakers and automotive manufacturers decided for some years now to join their efforts to promote the development and use of advanced high strength steels such as TRIP steels. A combination of high strength and large elongation is obtained thanks to the TRansformation Induced Plasticity (TRIP) effect. However, improvement of the mechanical properties is still possible, especially by the refinement of the matrix. In this work, two main ways were followed in order to reach improved properties. The classical way consisting of the annealing of cold-rolled samples and an innovative way consisting of obtaining the desired microstructure by direct hot rolling of the samples. In the classical way, this refinement can be obtained by acting on the chemical composition (with such alloying elements like Cu and Nb). It was observed that complete recrystallisation of the ferrite matrix is quite impossible in presence of Cu precipitates. In addition, if the ferrite recrystallisation is not completed before reaching the eutectoid temperature, the recrystallisation will be slowed down by a large way. An innovative heat treatment consisting in keeping the copper in solid solution in the high-Cu steel was developed. Therefore, ferrite recrystallises quite easily and very fine ferrite grains (~1µm) were obtained. In the innovative way, the effects of hot-rolling conditions on TRIP-assisted multiphase steels are of major importance for industrial practice and could open new dimensions for the TRIP steels (i.e. thanks to precipitation mechanisms leading to additive strengthening). Impressive mechanical properties (true stress at maximum load of 1500 MPa and true strain at uniform elongation of 0.22) were obtained with a relatively easy thermomechanical process, the role played by Nb being essential.
15

Influência da austenita retida no crescimento de trincas curtas superficiais por fadiga em camada cementada de aço SAE 8620 / The influence of retained austenite on short fatigue crack growth in case carburized SAE 8620 steel

Silva, Valdinei Ferreira da 02 October 1997 (has links)
A austenita retida está sempre presente na microestrutura de camada cementada de aços, em maior ou menor quantidade. Como é uma fase dúctil comparada à martensita, sua presença tem sido alvo de muita controvérsia. Este trabalho apresenta um estudo sobre a influência da austenita retida na propagação de trincas curtas por fadiga em camada cementada de aço SAE 8620. Foram feitos ensaios de fadiga por flexão em quatro pontos, a temperatura ambiente, em corpos de prova sem entalhe com três níveis de amplitude de tensão e razão de tensões de 0,1. Através de diferentes ciclos de cementação e tratamentos térmicos, foram obtidas camadas cementadas com quatro níveis de austenita retida na microestrutura. O teor de austenita retida foi medido através da técnica de difração de Raios-X. Trincas superficiais foram monitoradas por meio da técnica de réplicas de acetato. Como resultados foram obtidos tamanho de trinca em função do número de ciclos e taxa de crescimento de trincas curtas. Corpos de prova com maiores níveis de austenita retida apresentaram maior vida em fadiga. / The retained austenite is always present in case carburized steel microstructure in small or high percentages. Since it is a ductile phase, its presence has long been a controversial subject. The influence of retained austenite on short fatigue crack propagation in case carburized SAE 8620 steel was studied in this work. Four-point-bend fatigue tests were carried out at room temperature in specimens without notch using three levels of stress range and a stress ratio of 0.1. Four different amount of retained austenite in the case carburized microstructure were obtained through different cycles of carburizing and heat treating. The retained austenite content was measured by X-ray technique, and the surface short crack growth was monitored by means of acetate replication technique. Crack length versus number of cycles and crack growth rate versus mean crack length were obtained as results. Specimens with higher levels of retained austenite in the carburized case showed longer fatigue life.
16

Improvement of the mechanical properties of TRIP-assisted multiphase steels by application of innovative thermal or thermomechanical processes

Georges, Cédric 28 August 2008 (has links)
For ecological reasons, the current main challenge of the automotive industry is to reduce the fuel consumption of vehicles and then emissions of greenhouse gas. In this context, steelmakers and automotive manufacturers decided for some years now to join their efforts to promote the development and use of advanced high strength steels such as TRIP steels. A combination of high strength and large elongation is obtained thanks to the TRansformation Induced Plasticity (TRIP) effect. However, improvement of the mechanical properties is still possible, especially by the refinement of the matrix. In this work, two main ways were followed in order to reach improved properties. The classical way consisting of the annealing of cold-rolled samples and an innovative way consisting of obtaining the desired microstructure by direct hot rolling of the samples. In the classical way, this refinement can be obtained by acting on the chemical composition (with such alloying elements like Cu and Nb). It was observed that complete recrystallisation of the ferrite matrix is quite impossible in presence of Cu precipitates. In addition, if the ferrite recrystallisation is not completed before reaching the eutectoid temperature, the recrystallisation will be slowed down by a large way. An innovative heat treatment consisting in keeping the copper in solid solution in the high-Cu steel was developed. Therefore, ferrite recrystallises quite easily and very fine ferrite grains (~1µm) were obtained. In the innovative way, the effects of hot-rolling conditions on TRIP-assisted multiphase steels are of major importance for industrial practice and could open new dimensions for the TRIP steels (i.e. thanks to precipitation mechanisms leading to additive strengthening). Impressive mechanical properties (true stress at maximum load of 1500 MPa and true strain at uniform elongation of 0.22) were obtained with a relatively easy thermomechanical process, the role played by Nb being essential.
17

Quantitative characterization of microstructure in high strength microalloyed steels

Li, Xiujun Unknown Date
No description available.
18

Quantitative characterization of microstructure in high strength microalloyed steels

Li, Xiujun 11 1900 (has links)
X-ray diffraction (XRD) profile fitting (Rietveld method) was used in this study to characterize the microstructure for seven microalloyed steels, which were produced through thermomechanical controlled processing (TMCP). Microstructure characterization was conducted through the strip thickness. The microstructural variables studied include subgrain size, dislocation density, texture index and weight percent of retained austenite. The subgrain size was also analyzed by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The effects of processing parameters, including coiling temperature, cooling rate and alloying elements, on the microstructure were also investigated. It was found that decreasing the coiling temperature resulted in a finer subgrain size and higher dislocation densities. The texture index was observed to increase with decreasing coiling temperature. The subgrain size decreased and dislocation density increased as the amount of alloying elements (Ni, Mo and Mn) were increased. The amount of retained austenite increased at the strip center with increasing coiling temperature and increasing C and Ni content. / Materials Engineering
19

Gefügeausbildung und mechanische Eigenschaften von unlegiertem bainitischem Warmband mit Restaustenit

Korpala, Grzegorz 14 November 2017 (has links) (PDF)
Seit vielen Jahren wächst die Nachfrage bezüglich sparsamer Fahrzeuge; die Autohersteller konkurrieren miteinander und werben mit neuen Fahrzeugkonzepten, in denen hochmoderne Werkstoffe ihre Anwendung finden. In dieser Arbeit werden Legierungskonzepte und entsprechende Warmwalztechnologien einer ultrahochfesten bainitischen Stahlsorte mit Restaustenit vorgestellt, die der genannten Anwendung angepasst werden können. Der gewählte Werkstoff gehört zu den Stählen mit mittleren Kohlenstoffgehalten, die sich nach der - im Rahmen dieser Arbeit entwickelten - Behandlung durch hohe Zugfestigkeit bei vergleichsweise hoher Bruchdehnung auszeichnen. Es werden erweiterte Modelle zur Beschreibung der Phasenumwandlung von Stählen im Bainitgebiet vorgestellt. Die Ergebnisse aus den Experimenten wurden genutzt, um die Modelle zu ergänzen und zu evaluieren. Dabei wird nicht nur der Warmwalzprozess, sondern auch die chemische Zusammensetzung der Stähle selbst optimiert. Die hier präsentierte Arbeit erstreckt sich über die gesamte Produktionskette und zeigt geeignete Herstellungsbedingungen, die in Betriebsanlagen leicht realisierbar sind und umgesetzt wurden.
20

Optimising the mechanical properties and microstructure of armoured steel plate in quenched and tempered condition

Kasonde, Maweja 29 March 2007 (has links)
The effect of the chemical composition, austenitisation temperature and tempering temperature and time on the mechanical properties and on the ballistic performance of martensitic steel armour plates was studied. It was established in this study that the mechanical properties and the ballistic performance of martensitic steels can be optimised by controlling the chemical composition and the heat treatment parameters. However, it was observed that for a given chemical composition of the steel the heat treatment parameters to be applied to advanced ballistic performance armour plates were different from those required for higher mechanical properties. Such a contradiction rendered the relationship between mechanical properties and ballistic performance questionable. Systematic analysis of the microstructure and the fracture mechanism of some martensitic armour plate steels was carried out to explain the improved ballistic performance of steels whose mechanical properties were below that specificied for military and security applications. It was inferred from phase analysis and its quantification by X-ray diffraction, characterisation of the martensite using scanning electron microscopy, transmission electron microscopy and atomic force microscopy that the retained austenite located in the plate interfaces and on grain boundaries of the martensite was the main constituent resisting localised yielding during ballistic impact on thin steel plates. A part of the kinetic energy is transformed into adiabatic heat where a reaustenitisation of the plate martensite and the formation of new lath martensite was observed. Another part is used to elastically and plastically deform the ballistic impact affected region around the incidence point. Dislocation pile-ups at twinned plate interfaces suggest that the twin interfaces act as barriers to dislocation movement upon high velocity impact loading. The diameter of the affected regions, that determines the volume of the material deforming plastically upon impact, was found to vary as a function of the volume fraction of retained austenite in the martensitic steel. Upon impact, retained austenite transforms to martensite by Transformation Induced Plasticity, the “ TRIP ” effect. High volume fractions of retained austenite in the martensitic steel were found to yield low values of the ratio yield strength to ultimate tensile strength (YS/UTS) and a high resistance against localised yielding and, therefore, against ballistic perforation. A Ballistic Parameter was proposed for the prediction of ballistic performance using the volume fraction of retained austenite and the thickness of the armour plate as variables. Based on the martensite structure and the results of the ballistic testing of 13 armour plate steels a design methodology comprising new specifications was proposed for the manufacture of armour plates whose thicknesses may be thinner than 6mm. / Dissertation (MSc (Metallurgical Engineering))--University of Pretoria, 2007. / Materials Science and Metallurgical Engineering / unrestricted

Page generated in 0.0531 seconds