Spelling suggestions: "subject:"[een] RICH"" "subject:"[enn] RICH""
351 |
Fading phenomena in li-rich layered oxide material for lithium-ion batteriesKim, Taehoon January 2015 (has links)
Lithium-rich layered transition metal oxide cathode, represented as the chemical formula of xLi<sub>2</sub>MnO<sub>3</sub> · (1 - x)LiMO<sub>2</sub>(M = Mn, Ni, Co) , retains immense interest as one of the most promising candidates for energy storage system ranging from mobile devices to electric vehicle applications (EV/HEV/PHEV). This battery type benefits from superior theoretical capacity (>250 mAhg<sup>-1</sup>), high chemical potential (>4.6 V vs Li<sup>0</sup>), good thermal stability, high discharge capacity and lower cost compared with conventional cathodes (e.g. LiCoO<sub>2</sub>, Li(Ni<sub>1/3</sub>Mn<sub>1/3</sub>Co<sub>1/3</sub>)O<sub>2</sub> cathodes). However, there remain major barriers which still need to be improved in order to achieve a successful commercialization for large-scale devices or electric vehicle applications. The irreversible capacity loss of 40-100 mAhg<sup>-1</sup> during the initial electrochemical cycle and the battery fading phenomena (capacity fading/voltage decay) on further cycles are the major problems which have emerged. The Li<sup>+</sup> ion extraction accompanied by oxygen release from the active material in the form of oxide known as lithia (Li<sub>2</sub>O) along with the transition metal migration has been suggested as the dominant processes underlying the capacity fading mechanism. Those processes, in turn, cause a phase transition from a layered structure into a spinel within the electrode material. The interplay of the local atomic environments between Li<sub>2</sub>MnO<sub>3</sub> (monoclinic, C2/m) and LiMO<sub>2</sub> (trigonal/hexagonal, R3m) holds the key to developing better cathodes with enhanced stability. In the present thesis, an in operando XAS study using a specially-designed cell of the graphene- coated Li(Li<sub>0.2</sub>Mn<sub>0.54</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>)O<sub>2</sub> cathode is employed to examine the chemical, electronic, and structural states of the transition metals (Mn, Co, and Ni) during electrochemical cycle(s). Precise oxidation states for the transition metals is evaluated by the combined analyses from the XANES and SQUID measurements. The K-edge XANES spectral shift is quantified to investigate the contribution to the charge compensation mechanism by the oxidation change. Absorption features in K-edge XANES are identified. These features describe the electronic state of the individual atoms in the cathode composite, as well as the local distortion from the octahedral structure of MO<sub>6</sub>. The Fourier transform of EXAFS offers a satisfactory description of the local structure changes with the connection to the cation arrangement. The description is generally involved with the peak amplitude, position, shape changes (trend), and coordination numbers in the real space. Hence, similarities or discrepancies in the local atomic environments could be compared at different state of charge. Major structural parameters are deduced from the EXAFS fitting process. These parameters can be used to distinguish different atomic environments upon voltage bias levels or investigate the appearance of the Jahn-Teller effect. A new approach to understand the atomic environment upon charge-discharge is demonstrated, namely, a Continuous Cauchy Wavelet Transform (CCWT) which enables the visualization of the EXAFS spectra in three dimensions by decomposing the k-space and R-space (uncorrected for phase shift) signals. The wavelet transform analysis provides possible evidence of the precursor that leads to the spinel phase transition in this battery system.
|
352 |
HOW TO BE SOMEONE: A formula to Conquer the WorldGarlaschi, Carla January 2012 (has links)
Volume 1. How to be someone: A formula to Conquer the world is the misunderstanding by a Latin-American of what success means in the First World. / <p>Volume 1 is the first edition of a following publication to be released every April.</p><p></p>
|
353 |
Darwinian Domain-Generality: The Role of Evolutionary Psychology in the Modularity DebateLundie, Michael 03 May 2017 (has links)
Evolutionary Psychology (EP) tends to be associated with a Massively Modular (MM) cognitive architecture. I argue that EP favors a non-MM cognitive architecture. The main point of dispute is whether central cognition, such as abstract reasoning, exhibits domain-general properties. Partisans of EP argue that domain-specific modules govern central cognition, for it is unclear how the cognitive mind could have evolved domain-generality. In response, I defend a distinction between exogenous and endogenous selection pressures, according to which exogenous pressures tend to select for domain-specificity, whereas the latter, endogenous pressures, select in favor of domain-generality. I draw on models from brain network theory to motivate this distinction, and also to establish that a domain-general, non-MM cognitive architecture is the more parsimonious adaptive solution to endogenous pressures.
|
354 |
Profiling Precursor Lipids for Specialized Pro-Resolution Molecules in Platelet-Rich Plasma Following Fish Oil and Aspirin IntakeTurner, Lisa A 01 January 2017 (has links)
Background: Unfavorable outcomes following periodontal surgeries can be attributed to impaired resolution mechanisms likely due to decreased levels of specialized pro-resolution molecules (SPM). The current study investigates if SPM substrate pools in platelet-rich plasma preparations (PRP) can be increased by essential fatty acid (EFA) and / or aspirin supplementation. Methods: Nineteen healthy volunteers were randomly assigned to take i) aspirin; ii) EFA; iii) aspirin and EFA. Four hours after intake, the lipid precursor pools in PRP were quantified using combined Liquid Chromatography tandem mass spectrometry (LC-MS/MS) and the data statistically analyzed using ANCOVA. Results: Of the 77 metabolites screened, only FFA (18:3) showed a significant interaction effect (p=0.019). By itself, neither EFA (p>0.9) nor aspirin (p>0.4) showed any difference (P>0.4). Multiple comparisons could not identify the differences between groups. Conclusions: There is inadequate data to support oral supplementation of EFA and /or aspirin to increase SPM levels in PRP.
|
355 |
Disordered Icosahedral Boron-Rich Solids : A Theoretical Study of Thermodynamic Stability and PropertiesEktarawong, Annop January 2017 (has links)
This thesis is a theoretical study of configurational disorder in icosahedral boron-rich solids, in particular boron carbide, including also the development of a methodological framework for treating configurational disorder in such materials, namely superatom-special quasirandom structure (SA-SQS). In terms of its practical implementations, the SA-SQS method is demonstrated to be capable of efficiently modeling configurational disorder in icosahedral boron-rich solids, whiles the thermodynamic stability as well as the properties of the configurationally disordered icosahedral boron-rich solids, modeled from the SA-SQS method, can be directly investigated, using the density functional theory (DFT). In case of boron carbide, especially B4C and B13C2 compositions, the SA-SQS method is used for modeling configurational disorder, arising from a high concentration of low-energy B/C substitutional defects. The results, obtained from the DFT-based calculations, demonstrate that configurational disorder of B and C atoms in boron carbide is not only thermodynamically favored at high temperature, but it also plays an important role in altering the properties of boron carbide − for example, restoration of higher rhombohedral symmetry of B4C, a metal-to-nonmetal transition and a drastic increase in the elastic moduli of B13C2. The configurational disorder can also explain large discrepancies, regarding the proper- ties of boron carbide, between experiments and previous theoretical calculations, having been a long standing controversial issue in the field of icosahedral boron- rich solids, as the calculated properties of the disordered boron carbides are found to be in qualitatively good agreement with those, observed in experiments. In order to investigate the configurational evolution of B4C as a function of temperature, beyond the SA-SQS level, a brute-force cluster-expansion method in combination with Monte Carlo simulations is implemented. The results demonstrate that configurational disorder in B4C indeed essentially takes place within the icosahedra in a way that justifies the focus on lowenergy defect patterns of the superatom picture. The investigation of the thermodynamic stability of icosahedral carbon-rich boron carbides beyond the believed solubility limit of carbon (20 at.% C) demonstrates that, apart from B4C generally addressed in the literature, B2.5C represented by B10Cp2(CC) is predicted to be thermodynamically stable with respect to B4C as well as pure boron and carbon under high pressure, ranging between 40 and 67 GPa, and also at elevated temperature. B2.5C is expected to be metastable at ambient pressure, as indicated by its dynamical and mechanical stabilities at 0 GPa. A possible synthesis route of B2.5C and a fingerprint for its characterization from the simulations of x-ray powder diffraction pattern are suggested. Besides modeling configurational disorder in boron carbide, the SA-SQS method also opens up for theoretical studies of new alloys between different icosahedral boron-rich solids − for example, (B6O)1−x(B13C2)x and B12(As1−xPx)2. As for the pseudo-binary (B6O)1−x(B13C2)x alloy, it is predicted to display a miscibility gap resulting in B6O-rich and either ordered or disordered B13C2-rich domains for intermediate global compositions at all temperatures up to melting points of the materials. However, some intermixing of B6O and B13C2 to form solid solutions is also predicted at high temperature. A noticeable mutual solubility of icosahedral B12As2 and B12P2 in each other to form B12(As1−xPx)2 disordered alloy is predicted even at room temperature, and a complete closure of a pseudo-binary miscibility gap is achieved at around 900 K. Apart from B12(As1−xPx)2, the thermodynamic stability of other compounds and alloys in the ternary B-As-P system is also investigated. For the binary B-As system, zincblende BAs is found to be thermodynamically unstable with respect to icosahedral B12As2 and gray arsenic at 0 K and increasingly so at higher temperature, indicating that BAs may merely exist as a metastable phase. This is in contrast to the binary B-P system, in which zinc-blende BP and icosahedral B12P2 are both predicted to be stable. Owing to the instability of BAs with respect to B12As2 and gray arsenic, only a tiny amount of BAs is predicted to be able to dissolve in BP to form BAs1−xPx disordered alloy at elevated temperature. For example, less than 5% BAs can dissolve in BP at 1000 K. As for the binary As-P system, As1−xPx disordered alloys are predicted at elevated temperature − for example, a disordered solid solution of up to ∼75% As in black phosphorus as well as a small solubility of ∼1% P in gray arsenic at 750 K, together with the presence of miscibility gaps. The thermodynamic stability of three different compositions of α-rhombohedral boron-like boron subnitride, having been proposed so far in the literature, is investigated. Those are, B6N, B13N2, and B38N6, represented respectively by B12(N-N), B12(NBN), and [B12(N-N)]0.33[B12(NBN)]0.67. It is found that, out of these sub- nitrides, only B38N6 is thermodynamically stable from 0 GPa up to ∼7.5 GPa, depending on the temperature, and is thus concluded as a stable composition of α-rhombohedral boron-like boron subnitride.
|
356 |
Criblage génétique à la recherche de nouveaux gènes essentiels influençant l’homéostasie des télomères chez Saccharomyces cerevisiae : Un défi de tailles. / Genetic screen analysis to identify and understand new essential genes affecting telomere length homeostasis in Saccharomyces cerevisiae : a matter of sizeDiallo, Lisa January 2016 (has links)
Résumé : Chez la levure Saccharomyces cerevisiae, la régulation de la longueur des télomères témoigne de la compensation entre mécanismes d'érosion (exonucléases, réplication semi-conservative et résection), facteurs d’élongation (la télomérase, transcriptase inverse à l'action retrouvée dans 90% des cancers humains) et actions de diverses protéines de régulation télomérique spécifiques, conférant aux télomères leur caractère de « capuchon » protégeant les extrémités des chromosomes eucaryotes. Afin de savoir si les gènes impossibles à déléter, car essentiels à la survie cellulaire, jouent aussi un rôle sur l’homéostasie télomérique, j'ai réalisé un criblage génétique utilisant des mutants tet-off de la levure pour lesquels la sous-expression considérable d'un gène essentiel a été induite de façon conditionnelle. Ceci permet d’étudier les effets qui en résultent sur l’homéostasie des télomères. Au total, mon travail a traité plus de 662 gènes essentiels pour lesquels j'ai analysé le phénotype de longueur des télomères de manière qualitative par comparaison des télomères de souches mutées par rapport à ceux de souches de type sauvage. Puis, grâce à l’amélioration technique que j'ai mise au point, la quantification de la taille des répétitions télomériques de 300 de ces souches a déjà pu être précisément analysée. Il est notable que tous les gènes essentiels étudiés ici ont des effets très différents qui résultent en des chromosomes possédant des télomères de longueur très inégale. Pour près de 40% des mutants analysés, les tailles de télomères sont apparues critiquement différentes de celles normalement présentées par la levure, beaucoup de ces gènes essentiels étant impliqués dans des mécanismes affectant le cycle cellulaire, la réparation, etc. La majorité des gènes criblés apporte un important complément d’information dans une littérature presque inexistante sur les effets de gènes essentiels de la levure au niveau de la biologie des télomères. C’est le cas des mutations de YHR122W (montrant des télomères long) et YOR262W (télomères courts), deux gènes qui sont apparus d'après mes résultats nécessaires au maintien de l'homéostasie télomérique (prenant place dans un grand ensemble de gènes que j’ai dénommé gènes ETL pour Essential for Telomere Length Maintenance). / Abstract : In the yeast Saccharomyces cerevisiae, the regulation of telomere length reflects the offset between erosion mechanisms (exonucleases, semi-conservative replication and resection), elongating factors (via the telomerase reverse transcriptase, which is found in 90 % of human cancers) and actions of various specific telomeric regulatory proteins, which collectively confer telomeres their property of being a "Cap" that protects the ends of eukaryotic chromosomes. To determine whether essential genes that can not be suppressed also play a role in telomere homeostasis, I realized a genetic screen with yeast tet-off mut ants in which a significant under-expression of an essential gene was induced. This allows to study the resulting effects on telomere homeostasis. Overall, my work dealt with more than 662 essential genes for which I analyzed the telomere length phenotypes qualitatively by comparing telomere lengths in mutant strains to those in wild-type strains. Furthermore, via technical improvements that I developed, a quantification of the sizes of telomeric repeats from 300 of these strains was determined. It is notable that all essential genes studied here have very different effects resulting in chromosomes with very unequal lengths of telomeres. For nearly 40% of the analyzed mutants, telomeres sizes appeared to be critically different from those in wt yeast. Many of these essential genes are involved in mechanisms affecting the cell cycle, DNA replication, DNA repair, etc. The majority of genes revealed in our screen provide important additional information to an almost non-existing literature on the effects of essential genes on yeast telomere biology. This is particularly the case for underexpressing the gene YHR122W (yielding long telomeres) and YOR262W (yielding short telomeres). Both genes hence emerged from my results as necessary to maintain telomere homeostasis and collectively they are part of a large set of genes I called ETL genes for Essential for Telomere Length.
|
357 |
Genetic and epidemiological aspects of implantation defects : Studies on recurrent miscarriage, preeclampsia and oocyte donationElenis, Evangelia January 2016 (has links)
Implantation requires complex molecular and cellular events involving coagulation, angiogenesis and immunological processes that need to be well regulated for a pregnancy to establish and progress normally. The overall aim of this thesis was to study different models associated with atypical angiogenesis, impaired implantation and/or placentation, such as recurrent miscarriage (RM), oocyte donation (OD) and preeclampsia. Histidine-rich glycoprotein (HRG), a serum protein with angiogenic potential has been previously shown to have an impact on implantation and fertility. In two retrospective case-control studies, women suffering from RM (Study I) and gestational hypertensive disorders (GHD) (Study IV) have been compared to healthy control women, regarding carriership of HRG genotypes (HRG A1042G and C633T SNP, respectively). According to the findings of this thesis, heterozygous carriers of the HRG A1042G SNP suffer from RM more seldom than homozygous carriers (Study I). Additionally, the presence of the HRG 633T allele was associated with increased odds of GHD (GHD IV). Studies II and III comprised a national cohort of relatively young women with optimal health status conceiving singletons with donated oocytes versus autologous oocytes (spontaneously or via IVF). We explored differences in various obstetric (Study II) and neonatal (Study III) outcomes from the Swedish Medical Birth Register. Women conceiving with donated oocytes had a higher risk of GHD, induction of labor and cesarean section, as well as postpartum hemorrhage and retained placenta, when compared to autologously conceiving women. OD infants had higher odds of prematurity and lower birthweight and length when born preterm, compared to neonates from autologous oocytes. With regard to the indication of OD treatment, higher intervention but neverthelss favourable neonatal outcomes were observed in women with diminished ovarian reserve; the risk of GHD did not differ among OD recipients after adjustment. In conclusion, HRG genetic variation appears to contribute to placental dysfunction disorders. HRG is potential biomarker that may contribute in the prediction of the individual susceptibility for RM and GHD. Regarding OD in Sweden, the recipients-despite being of optimal age and health status- need careful preconceptional counselling and closer prenatal monitoring, mainly due to increased prevalence of hypertensive disorders and prematurity.
|
358 |
Caractérisation architecturale haute-résolution des lobes turbiditiques sableux confinés : exemple de la formation des Grès d'Annot (Eocène-Oligocène, SE France). / High-resolution architectural characterization of sand-rich confined turbidite lobes : Examples from the Annot Sandstone Formation (Eocene-Oligocene, SE France)Etienne, Samuel 13 December 2012 (has links)
La formation Eocène-Oligocène des Grès d’Annot constitue le remplissage gravitaire syntectonique de bassins d’avant-pays complexes, développés au front de l'orogène alpin. Les dépôts relativement distaux de ce système turbiditique s'apparentent à des lobes sous-marins. Ces corps sableux sont caractérisés par une géométrie tabulaire et isopaque à l’échelle pluri-kilométrique. Ce travail met cependant en évidence une extrême complexité dans la répartition des faciès, structures et figures sédimentaires, en lien avec une grande variabilité des processus de transport/dépôt. Ceux-ci sont à l’origine d'objets élémentaires à la géométrie et aux remplissages distincts. Cette forte variabilité sédimentaire implique d'importantes hétérogénéités pouvant influencer la circulation des fluides sur des systèmes réservoirs analogues. A titre de comparaison, une étude complémentaire est effectuée sur un système gravitaire carbonaté (Formation Guwayza, Jurassique moyen, Nord de l’Oman), en contexte de marge passive, afin de discuter de l’importance relative des processus à l’égard du contexte géodynamique sur la variabilité des lobes. / The siliciclastic Annot Sandstones formation (SE France) is composed of a thick series of gravitary deposits and represents the Late Eocene to Early Oligocene northward infill by various types of gravitary deposits of relatively small foreland basins developed in front of the Alpine orogen. This study brings new quantitative data on the terminal deposits of this turbidite system (sand-rich lobes) and focuses on their internal architecture from depositional event scale to elementary object scale. A longitudinal distribution model of elementary objects (from proximal vertically stacked channelized lobes to distal tabular lobes) and associated heterogeneities has been established. Those features have not been accurately described in sand-rich turbidite deposits so far. This high internal variability necessarily implies heterogeneities in terms of petrophysical characteristics (porosity, permeability) and reservoir connection that may have a significant impact on fluid circulation. As a comparison, a similar study on calciturbidites sheet-like lobes from the Middle Jurassic Guweyzah Formation of North Oman is introduced. These results allow reconsidering both sedimentary processes involved in sand-rich lobes and also reservoir models that can be established on field analogues.
|
359 |
Einfluss des Gravitational Platelet Separation System (GPS®-System) auf den postoperativen klinischen Verlauf nach medianer Sternotomie bei herzchirurgischem Eingriff / Influence of the Gravitational Platelet Separation System (GPS®-System) on the postoperative clinical course following median sternotomy in cardiothoracic surgeryDrescher, Andreas 06 August 2019 (has links)
No description available.
|
360 |
Characterization of two domains of Schizosaccharomyces pombe adenylate cyclaseBaum, Kristen Michelle January 2005 (has links)
Thesis advisor: Charles S. Hoffman / Glucose detection in yeast occurs via a cAMP signaling pathway that is similar to that of other signaling pathways in humans. The presence of glucose in the environment ultimately represses, as a result of cAMP signaling, the transcription of the gene fbp1. Adenylate cyclase is known to convert ATP to cAMP, and is thus a central protein in the propagation of the signal. Mutant forms of the adenylate cyclase gene (git2) have been found by the inability for the organism to repress fbp1 transcription in the presence of glucose. In this study, two questions were under investigation. The first was focused on the ability of the mutations to affect the dimerization of the catalytic domain. The second investigated multiple protein-protein interactions in the leucine rich-repeat (LRR) domain of adenylate cyclase. Both domains contain mutations that confer an activation defect, and they are thus are thought to have a relationship. / Thesis (BS) — Boston College, 2005. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Biology. / Discipline: College Honors Program.
|
Page generated in 0.08 seconds