• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 351
  • 151
  • 49
  • 41
  • 30
  • 20
  • 10
  • 10
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 797
  • 138
  • 132
  • 112
  • 109
  • 95
  • 61
  • 54
  • 48
  • 44
  • 43
  • 43
  • 37
  • 35
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Policy Failure and Petroleum Predation: The economics of civil war debate viewed from the `war zone'.

Pearce, Jenny V. January 2005 (has links)
No / The analysis of armed conflict in the post Cold War era has been profoundly influenced by neoclassical economists. Statistical approaches have generated important propositions, but there is a danger when these feed into policy prescriptions. This paper first compares the economics of civil war literature with the social movement literature which has also tried to explain collective action problems. It argues that the latter has a much more sophisticated set of conceptual tools, enriched by empirical study. The paper then uses the case of multipolar militarization in oil-rich Casanare, Colombia, to demonstrate complexity and contingency in civil war trajectories. State policy failure and civil actors can be an important source of explanation alongside the economic agendas of armed actors.
322

Characterization of the soybean genome in regions surrounding two loci for resistance to soybean mosaic virus

Hayes, Alec J. 11 August 1998 (has links)
Soybean mosaic virus (SMV), has been the cause of numerous and often devastating disease epidemics, causing reduction in both the quality and quantity of soybeans worldwide. Two important genes for resistance to SMV are Rsv1 and Rsv4. Alleles at the Rsv1 locus have been shown to control resistance to all but the most virulent strain of SMV. This locus has been mapped previously to the soybean F linkage group. Rsv4 is an SMV resistance locus independent of Rsv1 and confers resistance to all strains of SMV. This locus has not been mapped previously. The purpose of this study is to investigate the two genomic regions that contain these vitally important resistance genes. A population of 281 F2 individuals that had previously been genotyped for reaction to SMV was evaluated in a mapping study which combined bulk segregant analysis with Amplified Fragment Length Polymorphism (AFLP). A Rsv4-linked marker, R4-1, was identified that mapped to soybean linkage group D1b using a reference mapping population. More than 40 markers were mapped in the Rsv4 segregating population including eleven markers surrounding Rsv4. This will provide the necessary framework for the fine mapping of this important genetic locus. Previous work has located Rsv1 to a genomic region containing several important resistance genes including Rps3, Rpg1, and Rpv. An RFLP probe, NBS5, whose sequence closely resembles that of several cloned plant disease resistance genes has been mapped to this chromosomal region. The efficacy of using this sequence to identify potential disease resistance genes was assessed by screening a cDNA library to uncover a candidate disease resistance gene which corresponds to this NBS5 sequence. Two related sequence classes were identified that correspond to NBS5. Interestingly, one class corresponds to a full length gene closely resembling other previously cloned disease resistance genes offering evidence that this NBS5-derived clone is a candidate disease resistance gene. A new marker technique was developed by combining the speed and efficiency of AFLP with DNA sequence information from cloned disease resistance genes. Using this strategy, three new markers tightly linked to Rsv1 were identified. One of these markers, which maps 0.6 cM away from Rsv1, has motifs consistent with other cloned disease resistance genes, providing evidence that this approach is an efficient method for targeting genomic regions where disease resistance genes are located. / Ph. D.
323

Understanding the Chemistries of Ni-rich Layered Oxide Materials for Applications in Lithium Batteries and Catalysis

Waters, Crystal Kenee 17 November 2021 (has links)
Ni-rich layered oxide materials have gained significant attention due to the ongoing advances and demands in energy storage. The energy revolution continues to catapult the need for improved battery materials, especially for applications in portable electronic devices and electric vehicles. Lithium batteries are at the frontier of energy storage. Due to geopolitical concerns, there is a growing need to understand the chemistries of Co-free, Ni-rich layered oxide materials which are cost-efficient and possess increased practical capacity. The challenge to studying this class of materials is their inherent electronic and structural fragility. The fragility of these materials is facilitated by a cooperation of metal cation migration, lattice oxygen loss, and undesirable oxide cathode-electrolyte interfacial reactions. Each of these phenomena contribute to complex electrolyte decomposition pathways and oxide cathode structural distortions. Structural instability leads to poor battery performance metrics including specific capacity fading and decreased Coulombic efficiency. Electrolyte decomposition occurs at the oxide cathode surface, but it can lead to bulk electronic and structural changes, chemomechanical breakdown, and irreversible phase transformations in the material. The work in this dissertation focuses on understanding some of the chemistries associated with degradation of representative Ni-rich layered oxides, specifically LiNiO2 (LNO) and LiNixMnyCozO2 (NMC) (where x+y+z =1) materials. Chapter 1 provides a comprehensive review of the interfacial chemistries of fragile, Ni-rich layered oxide materials with carbonate-based liquid electrolytes. These reactions are key in deducing mechanistic pathways that promote thermal runaway. Uncontrollable oxygen loss and electrolyte oxidation leads to catastrophic battery fires and explosions. The chapter highlights the material properties that become perturbed during high states-of-charge which complicate the materials chemistry associated with Ni-rich layered oxides. Lastly, a few strategies to mitigate undesired, structurally detrimental reactions at the Ni-rich layered oxide cathode surface are provided in Chapter 1. To obtain the technical data detailed in this dissertation, a variety of analytical methods are employed. Chapter 2 introduces the working principles of the X-ray techniques, electron microscopy, and other quantification methods. X-ray techniques including synchrotron X-ray absorption spectroscopy (XAS), and its components XANES and EXAFS are discussed. Other X-ray techniques, including X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) are additionally included. Electron microscopy techniques, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning transmission electron microscopy (STEM) are provided. Quantification methods, such as gas chromatography – flame ionization detection (GC-FID) and other electrochemical testing methods are also described. Detailed experimental information obtained using the analytical methods is provided in the technical chapters. In understanding the chemistry of Ni-rich layered oxides, exploring surface reconstruction is key. Surface reconstruction, a phenomenon caused by a collaboration between Li/Ni cation intermixing and lattice oxygen loss, is one of the major explanations for structural degradation in Ni-rich layered oxide materials. Chapter 3 explores surface reconstruction and deduces a mechanism by which lattice oxygen is loss in LiNi0.6Mn0.2Co0.2O2 (NMC622). By exploiting Li+ intercalation chemistry, the work emulates various states-of-charge to explore how delithiation impacts small, organic molecule oxidation. Benzyl alcohol serves as a good probing molecule. It is similar to an oxidizable, nonaqueous electrolytic species that undergoes oxidation at the oxide cathode surface. Structure-reactivity trends are defined to correlate electronic and structural changes, lattice oxygen loss, and small molecule oxidation. After studying a proxy molecule, a practical system is required to grasp the complexity of the cathode-electrolyte interfacial reactions that promote Ni-rich layered oxide degradation. In Chapter 4, an electrolyte stirring experiment is described. Stirring experiments provide an accelerated testing method which helps to deduce the influences of chemical electrolyte decomposition on structural degradation of LiNiO2 (LNO). X-ray techniques are used to illustrate electronic perturbations and structural distortions in the material after probing with EC/DMC w/w 3:7 LiPF6. Additionally, this dissertation chapter features a novel voltage oscillation experiment that is employed to quantify Ni-rich oxide cathode degradation at the phase transition regions. LNO has three charging plateaus – H1  M, M  H2, and H2  H3. The latter two plateaus have been largely associated with irreversible structural fragility in Ni-rich layered oxides. Cation intermixing and oxygen loss are two phenomena that are largely associated with decreased Li+ intercalation kinetics and increased undesired side reactions. Although researchers debate the chemical phenomenon that occur at each of the phase transitions, most agree that the H2  H3 transition is highly influenced by irreversible lattice oxygen loss. This dissertation chapter describes the studies used to explore the electronic changes and structural distortions that accompany the voltage oscillation electrochemical testing. While Ni-rich layered oxides are largely employed as lithium battery cathodes, this class of material is unique in that it is a reducible and electronically tunable. Electronically modifiable metal oxide materials provide a unique platform to lend information to other applications, such as catalysis. There is much debate surrounding the role of metal oxides on metal nanocatalyst performance for catalytically reductive pathways. Chapter 5 discusses the method of employing LiNiO2 and other NMC materials as electronically tunable metal oxides to determine the role of the reducible metal oxide support on the gold (Au) nanocatalyst for p-nitrophenol reduction to p-aminophenol. By obtaining a continuum of nickel (Ni) oxidation states using delithiation strategies, structural-activity relationship trends are provided. Conversion rates for each of the delithiated materials was calculated using pseudo first-order kinetics. Lastly, a detailed discussion on metal oxide reducibility and its influences on key mechanistic factors, such as the induction period is included. Chapter 6 in this dissertation provides conclusions for the technical work provided. It bridges the works together and describes the overarching findings associated with the chemistries of Ni-rich layered oxide materials. This dissertation lays the foundation for future experimentation and innovation in understanding the surface chemistry of Ni-rich layered oxides. Chapter 7 provides future perspectives for each of the technical works included herein. Additionally, the final chapter includes insights toward the future of lithium batteries and other cathode chemistries. As the world navigates the energy revolution, it is important to provide global perspectives expected to catapult a sustainable future with batteries towards a greener world. / Doctor of Philosophy / Rechargeable lithium batteries have gained a significant surge of interest due to the ongoing demands for portable electronic devices, as well as the global trend towards electric vehicles to decrease the carbon footprint. Lithium batteries reside at the pinnacle of the energy transition. Layered oxide materials are typically employed as the cathode in Li-ion batteries. Ni-rich layered oxides have gained much interest due to their low cost and good charge/discharge capabilities. As consumers want increased charging rates and longer lifetimes, researchers struggle to optimize the balance between incorporating Ni-rich cathodes and increased safety concerns caused by cathode structural fragility. The lack of structural robustness is largely due to the surface reactivity of Ni-rich layered oxide materials. Bonding arrangements and electron transfer pathways intrinsic to this class of material increases the complexity in understanding the surface chemistry and the associated degradation pathways. Oxygen loss is the major cause of the safety issues in lithium batteries such as battery fires and explosions. To mitigate the safety concerns, it is imperative to understand the chemistries that promote organic, liquid electrolyte decomposition, electronic and structural changes, chemomechanical breakdown, and irreversible phase transformations. Each of these components leads to decreased battery performance. The work in this dissertation describes model and practical platforms to probe and understand the chemistries associated with battery performance degradation. A variety of analytical methods were utilized to determine overall structure-activity relationship trends and are highlighted in Chapter 2. Chapters 3-5 is technical research providing insight on Ni-rich layered oxide degradation pathways and behaviors. The work advances the understanding of battery surface chemistry which will lead to improved cathode design. As batteries continue to grow, it is important to know other applications that benefit from the unique chemistry of Ni-rich layered oxide materials. By exploiting the lithium battery cathode chemistry, this dissertation highlights a method to utilize these materials to understand the role of metal oxides on Au nanocatalysts. Conclusions to the findings in this dissertation are provided in Chapter 6. Future perspectives on the technical research provided herein this dissertation is included in Chapter 7. Additionally, Chapter 7 details future perspectives for lithium batteries and how they can facilitate the global transition toward a sustainable future.
324

Design and synthesis of Ni-rich and low/no-Co layered oxide cathodes for Li-ion batteries

Yang, Zhijie 23 February 2023 (has links)
Li-ion batteries (LIBs) have achieved remarkable success in electric vehicles (EVs), consumer electronics, grid energy storage, and other applications thanks to a wide range of electrode materials that meet the performance requirements of different application scenarios. Cathodes are an essential component of LIBs, which governs the performance of commercial LIBs. Layered transition metal oxide, i.e., LiNixCoyMn1-x-yO2 (NMC), is one family of cathodes that are widely applied in the prevailing commercial LIBs. With increasing demand for high energy density, the development of layered oxide cathodes is towards high Ni content because Ni redox couples majorly contribute to the battery capacity. Meanwhile, the battery community has been making tremendous efforts to eliminate Co in layered cathodes due to its high cost, high toxicity, and child labor issues during Co mining. However, these Ni-rich Co-free cathodes usually suffer from low electrochemical and structural stability. Several strategies are adopted to enhance the stability of Ni-rich Co-free cathodes, such as doping, coating, and synthesizing single crystal particles. However, the design principles and synthesis mechanisms of these approaches have not been fully understood. Herein, we design and synthesize stable Ni-rich and low/no-Co layered oxide cathodes by manipulating the chemical and structural properties of cathode particles. Our studies reveal the cathode formation mechanisms and shed light on the cathode design through complementary synchrotron microscopic and spectroscopic characterization methods. In Chapter 1, the motivation for LIB research is introduced from the perspective of its indispensable role in achieving carbon neutrality. We then comprehensively introduce the status of LIBs at present, including assessing their sustainability, worldwide supply chain and manufacturing, and cathode materials. Subsequently, we focus on the Co-free layered oxide cathodes and discuss their structure, limitations, and strategies to address the challenges. Finally, we discuss single crystal Ni-rich layered oxide cathodes and the challenges and strategies associated with their synthesis. In Chapter 2, we investigate the dopant redistribution, phase propagation, and local chemical changes of layered oxides at multiple length scales using a multielement-doped LiNi0.96Mg0.02Ti0.02O2 (Mg/Ti-LNO) as a model platform. We observed that dopants Mg and Ti diffuse from the surface to the bulk of cathode particles below 300 °C long before the formation of any layered phase, using a range of synchrotron spectroscopic and imaging diagnostic tools. After calcination, Ti is still enriched at the cathode particle surface, while Mg has a relatively uniform distribution throughout cathode particles. Our findings provide experimental guidance for manipulating the dopant distribution upon cathode synthesis. In Chapter 3, we synthesized Mn(OH)2-coated single crystal LiNiO2 (LNO) and used it as the platform to monitor the Mn redistribution and the structural and chemical evolution of the LNO cathode. We use in situ transmission X-ray microscopy (TXM) to track the Mn tomography inside the LNO particle and Ni oxidation state evolution at various temperatures below 700 °C. We further reveal chemical and structural changes induced by different extents of Mn diffusion at ensemble-averaged scale, which validates the results at the single particle scale. The ion diffusion behavior in the cathode is highly temperature dependent. Our study provides guidance for ion distribution manipulation during cathode modification. In Chapter 4, we successfully fabricated a surface passivation layer for NMC particles via a feasible quenching approach. A combination of bulk and surface structural characterization methods show the correlation of surface layer with bulk chemistry including valence state and charge distribution. Our design enables high interfacial stability and homogeneous charge distribution, impelling superior electrochemical performance of NMC cathode materials. This study provides insights into the cathode surface layer design for modifying other high-capacity cathodes in LIBs. In Chapter 5, we use statistical tools to identify the significance of multiple synthetic parameters in the molten salt synthesis of single crystal Ni-rich NMC cathodes. We also create a prediction model to forecast the performance of synthesized single crystal Ni-rich NMC cathodes from the input of synthetic parameters with relatively high prediction accuracy. Guided by the models, we synthesize single crystal LiNi0.9Co0.05Mn0.05O2 (SC-N90) with different particle sizes. We find large single crystals show worse capacity and cycle life than small single crystals especially at high current rates due to slower Li kinetics. However, large single crystal has higher thermal stability potentially because of smaller specific surface area. The findings of particle size effect on the performance provide insights into size engineering while developing next-generation single crystal Ni-rich NMC cathodes. The statistical and prediction models developed in this study can guide the molten salt synthesis of Ni rich cathodes and simplify the optimization process of synthetic parameters. Chapter 6 summarizes our efforts on the novel design and fundamental understanding of the state-of-the-art cathodes. We also provide our future perspectives for the development of LIBs. / Doctor of Philosophy / Lithium-ion batteries (LIBs) have been studied for decades and are widely applied in electronics and vehicles because of their high energy density and long lifetime. With the increasing demand for higher energy density, particularly in electric vehicles, the development of Ni-based layered oxide cathode materials has been focused on increasing the Ni content. Meanwhile, decreasing or eliminating Co has become a consensus due to its high cost, toxicity, and human rights issues during mining. Enhancing the stability of these Ni-rich and low/no-Co layered oxide cathodes is challenging yet crucial to their practical applications. Herein, we design and synthesize multiple Ni-rich and low/no-Co layered cathodes through ion distribution engineering and structure modification at various length scales. We also investigate the dopant redistribution, phase propagation, and local chemical changes during layered oxides cathode formation through a combination of complementary characterization methods at different length scales. In addition, we provide guidance for synthesis optimization by statistical correlations and performance prediction models with the input of synthetic conditions. Overall, this dissertation provides insights into the design and synthesis principles of Ni-rich low/no-Co layered oxide cathode, which can facilitate the transition to a sustainable future with next-generation LIBs.
325

Producción y utilización Biotecnológica de nuevas proteínas antifúngicas de hongos filamentosos

Garrigues Cubells, Sandra María 26 November 2018 (has links)
Tesis por compendio / [ES] Los péptidos antimicrobianos (AMP) son una alternativa prometedora para el desarrollo de nuevos antifúngicos que puedan sustituir a los fungicidas usados en agricultura. Sin embargo, el alto coste de la síntesis química y la dificultad para su producción a gran escala han limitado su aplicación. Las proteínas antifúngicas (AFP) son AMP naturales, pequeñas, catiónicas, secretadas y ricas en cisteína con gran potencial para el control de hongos fitopatógenos. Las AFPs se encuentran en hongos filamentosos, son estables y pueden producirse en grandes cantidades. Sin embargo, el papel biológico en su hongo productor no se conoce en profundidad. En esta tesis, se estudió la diversidad de AFPs en genomas de hongos ascomicetos y se propuso una nueva clasificación en tres clases (A, B y C). Penicillium digitatum es el principal patógeno postcosecha de cítricos y codifica solo una AFP en su genoma de clase B (AfpB), mientras que Penicillium expansum, el principal patógeno postcosecha de manzana, codifica una AFP de cada clase (AfpA, AfpB y AfpC). En este trabajo describimos la producción biotecnológica y la caracterización de estas cuatro AFPs. Se ha caracterizado el papel biológico del gen afpB en P. digitatum mediante estudios de expresión génica y generación de mutantes nulos y de expresión constitutiva. Los resultados indicaron que afpB es prescindible para la biología y el ciclo vital del hongo, aunque la expresión del gen afpB bajo el promotor constitutivo gpdA de Aspergillus nidulans es perjudicial para su crecimiento y virulencia. Sorprendentemente, ni la cepa parental ni las cepas constitutivas produjeron cantidades detectables de AfpB a pesar de la alta expresión del gen codificante. El modelado molecular y el diseño racional permitieron predecir la estructura terciaria de AfpB y diseñar péptidos sintéticos para mapear motivos antifúngicos en su secuencia primaria. Confirmamos que los bucles catiónicos L2 y L3 mostraron actividad antifúngica moderada y que pueden actuar sinergísticamente. Con el objetivo de producir AfpB mediante biotecnología, usamos un casete de expresión de AFPs basado en las regiones promotora y terminadora del gen paf de Penicillium chrysogenum, hongo que produce naturalmente grandes cantidades de su propia proteína PAF. Este casete funcionó en P. digitatum y permitió la producción homóloga de AfpB. Los datos también mostraron que las secuencias del péptido señal (SP) y el pro-péptido de la SP-Pro-AfpB no determinan la producción de proteína. También demostramos la estabilidad térmica y la resistencia a la proteólisis de AfpB, y aportamos datos que sugieren que la estructura terciaria no es necesaria para la actividad antifúngica. Similar a lo descrito en P. digitatum, ninguna de las tres AFPs se detectó en los sobrenadantes de cultivo en medio rico de P. expansum. Sin embargo, AfpA se produjo en grandes cantidades en cultivos de medio mínimo de P. expansum. Para completar el repertorio de AFPs, produjimos las tres AFPs de P. expansum (AfpA, AfpB y AfpC) en P. chrysogenum con el casete paf. Las tres proteínas de P. expansum se produjeron, purificaron y caracterizaron con éxito. Ninguna de las AFPs producidas en este trabajo fue citotóxica frente a eritrocitos de mamíferos. AfpA de P. expansum seguida de AfpB de P. digitatum fueron las AFPs más activas contra hongos filamentosos, incluyendo patógenos de plantas y humanos, productores de micotoxinas y sus propios hongos productores, una característica previamente no descrita en las AFPs. Además, la AfpA de P. expansum y la AfpB de P. digitatum protegieron frente a la infección causada por el hongo Botrytis cinerea en plantas de tomate, y AfpA de P. expansum protegió frente a P. digitatum en frutos de naranja. Estos resultados confirman nuestra hipótesis de que las AFPs son buenas candidatas para el desarrollo de nuevos antifúngicos en protección vegetal y conservación postcosecha, pero ta / [CA] Els pèptids antimicrobians (AMP) són una alternativa prometedora per al desenvolupament de nous antifúngics que puguen substituir als fungicides utilitzats en agricultura. No obstant això, l'alt cost de la síntesi química i la dificultat per a la producció biotecnològica a gran escala han limitat la seua aplicació. Les proteïnes antifúngiques (AFP) són AMPs naturals, xicotetes, catiòniques, secretades i riques en cisteína que oferixen un gran potencial per al control de fongs fitopatogens. Les AFPs estan presents de en fongs filamentosos, són molt estables i poden produir-se en grans quantitats. No obstant això, el paper biològic d'estes AFPs en el seu fong productor encara no està clar. En esta tesi es va estudiar la diversitat d'AFPs en genomes de fongs ascomicets i es va proposar una nova classificació en tres clases (A, B i C). Penicillium digitatum, el principal patogen postcollita de cítrics, codifica només una AFP en el seu genoma de classe B (AfpB). Penicillium expansum, el principal patogen postcollita de poma, codifica una AFP de cada classe (AfpA, AfpB i AfpC). En este treball presentem la producció biotecnològica i la caracterització d'estes quatre AFPs. Hem caracteritzat el paper biològic del gen afpB en P. digitatum mitjançant estudis d'expressió gènica i la generació de mutants nuls i d'expressió constitutiva. Els resultats van indicar que afpB és prescindible per a la biologia i el cicle de vida d'este fong, encara que l'expressió del gen afpB davall el promotor constitutiu gpdA d'Aspergillus nidulans és perjudicial per al seu creixement i virulència sobre fruits cítrics. Sorprenentment, ni el cep parental ni els ceps constitutius van produir quantitats detectables d'AfpB malgrat l'alta expressió del gen afpB. El modelatge molecular i el disseny racional van permetre predir l'estructura terciària d'AfpB i dissenyar pèptids sintètics per a identificar motius antifúngics dins de la seqüència primària. Confirmarem que les estructures catiòniques L2 i L3 mostren activitat antifúngica i que poden actuar de forma sinèrgica. Amb l'objectiu de la producció biotecnològica d'AfpB, utilitzarem un casset d'expressió d'AFPs basat en les regions promotora i terminadora del gen paf de Penicillium chrysogenum, el qual produïx naturalment grans quantitats de la seua pròpia proteïna PAF. Este casset va funcionar en P. digitatum i va permetre la producció homòloga d'AfpB. Les dades també van mostrar que les seqüències del pèptid señal (SP) i el propèptid de la SP-Pro-AfpB no determinaren la producció de proteïna. També demostrarem l'extrema estabilitat tèrmica i la resistència proteolítica d'AfpB, i proporcionem dades que suggerixen que l'estructura terciària no és necessària per a l'activitat antifúngica. Semblant a P. digitatum, cap de les tres AFPs es van detectar en els sobrenadants de medi de cultiu ric de P. expansum. Al contrari, AfpA es va produir en grans quantitats en cultius de P. expansum en medi mínim. Per a completar el repertori d'AFPs, vam produir les tres AFPs de P. expansum (AfpA, AfpB i AfpC) en P. chrysogenum mitjançant l'ús del casset paf. Així, les tres proteïnes de P. expansum es van produir, purificar i caracteritzar amb èxit. Cap de les AFPs produïdes en este treball va ser citotóxica front eritròcits de mamífer. AfpA de P. expansum seguida d'AfpB de P. digitatum van ser les AFPs més actives contra fongs filamentosos, incloent patògens de plantes i humans, productors de micotoxines i els seus propis productors, una característica prèviament no descrita per a les AFPs. A més, AfpA de P. expansum i AfpB de P. digitatum van protegir front la infecció causada pel fong Botrytis cinerea en plantes de tomaca, i l'AfpA de P. expansum va protegir front P. digitatum en fruits de taronja. Estos resultats confirmen la nostra hipòtesi anterior de que les AFPs són bones candidates per al desenvolupament d'antifúngics en protecció / [EN] Antimicrobial peptides (AMPs) are promising antifungal alternatives to the fungicides used in agriculture. However, the high cost of chemical synthesis and the difficulties of large-scale production have limited their application. Antifungal proteins (AFPs) are a group of natural, small, cationic, secreted, cysteine-rich AMPs that offer a great potential to develop new biomolecules for the control of phytopathogenic fungi. AFPs are naturally present in filamentous fungi, are very stable, and can be produced in large amounts. However, the biological role of these AFPs in their producer fungus is still unclear. In this thesis, we first studied the diversity of AFPs in ascomycetous genomes and proposed a new classification in three different classes (A, B and C). Penicillium digitatum is the main citrus postharvest pathogen and encodes only one AFP from class B in its genome (AfpB), while Penicillium expansum is the main pome postharvest pathogen and encodes one AFP from each class (AfpA, AfpB and AfpC). In this work, we report the identification, efficient biotechnological production and characterization of these four AFPs. We characterized the biological role of the afpB gene in P. digitatum by the study of its gene expression pattern and the generation of null and constitutive expression mutants. Results indicated that afpB is dispensable for the biology and life cycle of this fungus, although expression of the afpB gene under the constitutive Aspergillus nidulans gpdA promoter is detrimental to growth and virulence to citrus. Surprisingly, neither the wild type nor the constitutive strains produced detectable amounts of AfpB in spite of the high afpB gene expression. Molecular modeling and rational design allowed us to predict the AfpB tertiary structure and design synthetic peptides to map antifungal motifs within the AfpB primary sequence. We confirmed that the cationic exposed loops L2 and L3 showed moderate antifungal activity and that they can act synergistically. With the objective of the biotechnological production of AfpB, we used an AFP expression cassette based on the promoter and terminator regions of the well-studied paf gene from Penicillium chrysogenum, which naturally produces high amounts of its own protein PAF. This paf cassette worked efficiently in P. digitatum and allowed the homologous production of AfpB. Data also showed that the signal peptide (SP) and pro-peptide sequences of the translated SP-Pro-AfpB do not determine protein production. We also demonstrated the thermal stability and resistance to proteolytic cleavage of the P. digitatum AfpB, and provided data that suggest that tertiary structure is not required for antifungal activity. Similar to P. digitatum, none of the three AFPs were detected in supernatants of cultures of P. expansum in rich medium. By contrast, AfpA was produced with very high yields in P. expansum cultures in minimal medium. To complete the repertoire of AFPs from P. expansum we produced the three AFPs from P. expansum (AfpA, AfpB and AfpC) in P. chrysogenum with the use of the paf cassette. With this combined approach, the three P. expansum proteins were successfully produced, purified and characterized. None of the four AFPs produced in this work were cytotoxic against mammal erythrocytes. The P. expansum AfpA followed by the P. digitatum AfpB were the most active AFPs against filamentous fungi, including plant and human pathogens, mycotoxin-producer fungi, and their own producers, a feature that had not been previously described for AFPs. Moreover, AfpA from P. expansum and AfpB from P. digitatum protected against fungal infection caused by Botrytis cinerea in tomato plants, and additionally the P. expansum AfpA protected against P. digitatum in orange fruits. These results confirm our previous hypothesis that AFPs are good candidates for the development of antifungals in plant protection and postharvest conservation, but also in clinic or food preservation. / Garrigues Cubells, SM. (2018). Producción y utilización Biotecnológica de nuevas proteínas antifúngicas de hongos filamentosos [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/113162 / Compendio
326

Clinical Outcomes and Patient Satisfaction of Platelet-Rich Plasma Injections in Regenerative Aesthetic Medicine

Bascos, Inah Cassandra 01 January 2024 (has links) (PDF)
Regenerative medicine is a growing interdisciplinary domain within biomedical research that seeks to restore, regenerate, and substitute impaired tissues and cells. Platelet-rich plasma (PRP) is an emerging therapeutic modality in the field of regenerative medicine, which has garnered considerable attention for its capacity to facilitate and expedite tissue healing processes. Despite the availability of various conventional therapeutic approaches focusing on wound healing and growth factors, the use of new treatments remains a clinical challenge. Hence, the current study aims to investigate the field of regenerative skin wound healing, with a specific focus on the use of platelet-rich plasma (PRP) and establish a meaningful connection between clinical outcomes and patient satisfaction, while also exploring the properties and potential advantages of PRP. This qualitative study included fifteen patients from medical spas and clinics in Orlando, Florida, who had received PRP treatments within the last two years. The data, obtained through semi-structured interviews, were analyzed by conventional content analysis using Graneheim and Lundman’s approach (2004). Finally, data analysis identified three major categories: clinical outcomes, patient satisfaction, and quality of life (QoL). Improvement in facial texture and hair quality was found to be a significant predictor of positive clinical outcomes, and higher levels of self-esteem and a positive outlook on the aging process were strong indicators of improved quality of life (QoL). The present study offers empirical evidence that substantiates the positive patient satisfaction scores and the strong safety profile that are commonly linked with platelet-rich plasma (PRP) injections. Therefore, based on our analysis, we consider platelet-rich plasma (PRP) to be a viable and reliable therapeutic approach for addressing conditions such as alopecia, acne scars, and skin rejuvenation.
327

Necessity of HuR/ELAVL1 for activation-induced cytidine deaminase-dependent decrease in topoisomerase 1 in antibody diversification / 抗体多様化においてHuR/ELAVL1はactivation-induced cytidine deaminase依存性のtopoisomerase1の減少に必要である

AMIN, WAJID 24 July 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24833号 / 医博第5001号 / 新制||医||1067(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 生田, 宏一, 教授 上野, 英樹, 教授 濵﨑, 洋子 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
328

WS://IM: A Software Framework for Multimodal Web Interaction Management

Williams, Christopher Stephen 10 June 2004 (has links)
The rise of ubiquitous computing devices has provided the catalyst for the next generation World Wide Web, one that shifts the focus from the desktop computer to mobile devices such as cell phones and PDAs, in an ever increasing range of modalities. Web interaction management in this setting must contend with a plethora of interaction interfaces and a diverse range of content types in addition to helping realize the full potential of multimodality (i.e., supporting flexible and personalized interactions between humans and sites). This thesis presents WS://IM, a new software framework for web interaction management that is capable of supporting multimodal interactions. In addition to presenting a loosely bundled, factorized architecture that supports hyperlink interaction, WS://IM has the unique facilitation for out-of-turn interaction. Out-of-turn interaction is a novel technique that helps realize mixed-initiative interactions between humans and Web sites. Design methodology, implementation details, and exposition through three implemented case studies are provided. / Master of Science
329

Understanding and Controlling the Degradation of Nickel-rich Lithium-ion Layered Cathodes

Steiner, James David 08 October 2018 (has links)
Consumers use batteries daily, and the lithium-ion battery has undergone a lot of engineering advances in the last few decades. There is a need to understand and improve the cathode chemistry to adapt to the rapidly growing electronics and electric vehicle market that is continually demanding more energy from batteries. Nickel-rich layered LiNi<sub>1-x-y</sub>Mn<sub>x</sub>Co<sub>y</sub>O₂ (1-x-y ≥ 0.6, NMC) cathodes could potentially provide the necessary energy to meet the demand of the high energy applications. Overcoming the stability issues from oxygen activation in nickel-rich materials is one of the largest challenges facing the commercial incorporation of NMCs. This thesis focuses on, LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub> (NMC811). Using surface sensitive techniques, such as Xray Absorption (XAS), our research reveals that degradation of NMC811 occurs during cycling, regardless of temperature, and that oxygen activation plays a role in the overall surface changes and degradation observed in NMC811. The thesis then explores the role of substituting a transition metal in the NMC811. Then we used a gradient addition of titanium to the NMC811 material to stabilize the battery performance. Theoretical techniques, such as Finite Difference Method Near Edge Structure, and experimental techniques, such as XAS, revealed how transition metal substitution, specifically titanium, stabilized the lattice. The results indicated that titanium deactivates oxygen by limiting the nickel and oxygen covalency that typically leads to oxygen activation upon charging. We observed that the titanium substitution increases cycling reversibility after hundreds of cycles. Overall, the work indicates that a more stable nickel-rich material is possible. It identifies the reasons why substitution can work in cathode materials. Additionally, the methods described can provide a guideline to further studies of stabilization of the cathode. / Master of Science / Consumers across the world use lithium-ion batteries in some fashion in their everyday life. The growing demand for energy has led to batteries dying quicker than consumers want. Thus, there are calls for researchers to develop batteries that are longer lasting. However, the initial increase in battery life over the years has been from better engineering and not necessarily from making a better material for a battery. This thesis focuses on the understanding of the chemistry of the materials of a battery. Throughout the chapters, the research delves into the how and why materials with extra nickel degrade quickly. Then, it investigates a method of making these nickel-rich materials last longer and how the chemistry within these materials are affected by the addition of a different metal. Overall, the findings indicate that the addition of titanium creates a more stable material because it mitigates the release of oxygen and prevents irreversible changes within the structure of the material. It determines that the chemistry behind the failings of nickel-rich lithium-ion batteries and a potential method for allowing the batteries to last longer. It also provides insight and guidance for potential future research of stabilization of lithium-ion materials.
330

Investigating Natural Proline-rich Antimicrobial Peptides (PrAMPs) Activity Towards Klebsiella pneumoniae

Appiah, Ridhwana M 01 January 2024 (has links) (PDF)
The rapid progression of Klebsiella pneumoniae towards antibiotic resistance is a significant concern, primarily due to its protective extracellular polysaccharide (EPS) capsule that shields the bacteria from host immunity. Our previous research demonstrated that antimicrobial peptides could disrupt the EPS capsule of K. pneumoniae. Further analysis identified Bac7 (1-35), a proline-rich antimicrobial peptide (PrAMP), as having the greatest ability to aggregate with the K. pneumoniae EPS capsule, exhibiting potent antimicrobial activity. However, the relationship between key features facilitating EPS and membrane interactions, as well as antimicrobial efficacy, remains poorly understood. Here, we used natural PrAMPs from diverse organisms to investigate their interactions with the cell envelope of K. pneumoniae. Apidaecin Cd3+, Tur1A, and PR-39 peptides demonstrated activity against all tested strains, with a minimum inhibitory concentration ≤ 1 µg/mL. These peptides shared a proline content exceeding 36% and a charge greater than +5. Active PrAMPs induced membrane depolarization in K. pneumoniae, with the extent of depolarization directly correlating with peptide charge, suggesting membrane depolarization as a potential mechanism for PrAMP entry into the cell. Checkerboard assays of active PrAMPs with PepC, an inactive peptide, suggested the membrane actions of PrAMPs have potential to rescue a therapeutic unable to access the bacterial membrane. Consistent with our findings with bac7(1-35) truncated analogs, both active and inactive PrAMPs aggregated with K. pneumoniae EPS, suggesting that the antimicrobial activities and polysaccharide aggregation potential of this class of peptides can be studied independently. Furthermore, the treatment of biofilms with active peptides revealed unique structure-based biofilm changes, with Tur1A causing more structural collapse than PR-39. Our findings highlight a potential membrane mediated peptide uptake into the cell which is dependent on the charge of the peptide. Differential biofilm interactions between similar peptides and EPS aggregation of inactive peptides warrant these attributes of PrAMPs to be further studied independently.

Page generated in 0.0904 seconds