Spelling suggestions: "subject:"[een] RIGID BODIES"" "subject:"[enn] RIGID BODIES""
1 |
[en] MODELING AND SIMULATION OF PLANE COLLISIONS BETWEEN RIGID BODIES / [pt] MODELAGEM E SIMULAÇÃO DE COLISÕES PLANAS ENTRE CORPOS RÍGIDOSEDSON LUIZ CATALDO FERREIRA 12 November 2001 (has links)
[pt] Em geral, o movimento de corpos se dá em ambiente com
barreiras podendo ocorrer colisões. Para que seja possível
fazer previsões da dinâmica é necessário saber o que
acontece quando um corpo colide. O problema é portanto:
conhecida a dinâmica do corpo pré-colisão e as propriedades
dos corpos que colidem, prever a dinâmica pós-colisão. Os
primeiros trabalhos publicados sobre o assunto datam de
1668 e, até 1984,os modelos existentes pareciam
satisfatórios. Porém a aplicação de um desses modelos a um
problema simples apresentou geração de energia. Desde
então, um grande número de trabalhos tem aparecido na
literatura. A tese trata de problema de colisões planas,
discute criticamente os modelos da literatura comparando-os
através de uma generalização por nós desenvolvida e propõe
um novo modelo que engloba alguns dos modelos da
literatura. Mostramos os principais problemas de alguns dos
modelos e discutimos questões de existência e unicidade.
Simulações feitas num programa por nós desenvolvido são
apresentadas e ajudam a entender a influência dos
coeficientes constitutivos. A validação dos resultados é
realizada através de resultados experimentais colhidos da
literatura. / [en] In general the motion of a body takes place in a confined
environment and collision of the body with the containing
wall is possible. To predict the dynamics of a body in this
conditions one must know what happens in a collision. The
problem is then: known the pre-collision dynamics of the
body and the properties of the body and the wall one want
to predict the post-collision dynamics. This problem is
quite old and it appeared in the literature in 1968. Up to
1984 it seemed that Newton model was enough to solve the
problem. But it was found that this was not the case and a
renewed interest in the problem appeared. This thesis
treats the problem of plan collisions of rigid bodies and
tries to classify the differents models and to compare
them. A new model is presented and old results are shown in
a new framework.
|
2 |
[en] AN INTRODUCTION TO THE DYNAMICS OF MULTIBODY SYSTEMS / [pt] UMA INTRODUÇÃO À DINÂMICA DE SISTEMAS DE MULTICORPOSMARCELO AREIAS TRINDADE 18 September 2001 (has links)
[pt] Este trabalho tem por objetivo apresentar uma introdução à
dinâmica de sistemas de multicorpos compostos por partes
rígidas e flexíveis, através da exposição das diversas
etapas: Modelagem, Simulação e Controle.
A modelagem de sistemas de multicorpos é apresentada,
atentando para os problemas de representação de rotações,
caracterização de deformações dos corpos flexíveis e
manipulação simbólica para formulação das equações do
movimento. A parametrização de rotações é apresentada
utilizando parâmetros clássicos como ângulos de Euler e
Bryant, parâmetros de Euler e Rodrigues, assim como, vetor
rotação, vetor rotação conforme e quaternios. O problema de
singularidade das parametrizações é estudado, através
da comparação de diferentes parametrizações.
Para a caracterização de deformações dos corpos flexíveis é
apresentado o método de modos supostos. A formulação das
equações do movimento é apresentada utilizando as equações
de Lagrange e Maggi-Kane. O toolbox de manipulação
simbólica do MATLAB é utilizado para derivar as equações do
movimento.
O controle linear de sistemas de multicorpos é apresentado
utilizando a representação no espaço de estados. Duas
metodologias de projeto de controle são apresentadas:
controle via imposição de pólos e controle ótimo.
A simulação de sistemas de multicorpos é apresentada
por meio de alguns exemplos ilustrativos da dinâmica e do
controle de multicorpos, atentando para a escolha do método
de integração. Todas as etapas são realizadas no ambiente do
MATLAB, utilizando suas funções de manipulação simbólica
para a modelagem, suas funções de linearização e controle
para o controle e seus algoritmos de integração e funções
gráficas para a simulação. / [en] This work intends to present an introduction to the
Dynamics of Multibody Systems,
with rigid and flexible bodies, by presenting the
following stages: Modelization, Control and
Simulation. The modelization of multibody systems is
presented, exploring finite rotation
parametrization, description of deformation of the
flexible bodies and symbolic derivation of
the equations of motion. Finite rotations parametrization
is presented using classical systems
of parametrization such as Euler`s and Bryant`s angles,
Euler`s and Rodrigues` parameters
and conformal rotation vector, rotation vector and
quaternions. The problem of singularity of
parametrization is studied by the comparison of the
various systems of parametrization. The
method of assumed modes is presented to describe the
deformation of flexible bodies. The
formulation of the equations of motion is done using
Lagrange`s and Maggi-Kane`s equations.
The equations of motion are derived using the MATLAB`s
Symbolic Math Toolbox. The
state-space linear control of multibody systems is
presented. Two different methods are
presented to design the control system: eigenvalues
imposition and optimal control. The
simulation of some numerical examples of multibody systems
is presented. An analysis of the
integration methods is done. All the computations are done
in MATLAB, using the Symbolic
Math Toolbox functions to the modelization, the Control
Toolbox to the control and the
OdeSuite to the integration of the equations of motion.
|
3 |
Simulering av mjuka kroppar för spelJohannesson, Roger January 2006 (has links)
<p>I dagens spelindustri baseras nästan samtliga 3D-spel på fysiksimuleringar med stela kroppar (rigid bodies). Examensarbetet undersöker vilka alternativa modeller som finns för att simulera mjuka deformerbara objekt, deformerbara i det avseendet att de kan ändra form och inte nödvändigtvis att de kan gå sönder i flera bitar. Rapporten inleds med en undersökande del som tar upp några existerande metoder för att hantera dynamiken inom ett mjukt objekt för att sedan beskriva en metod i detalj som dessutom implementeras i ett kodbibliotek. Ett deformerbart objekt är inte så spännande om det inte finns något sätt att deformera det på, därför undersöks även hur kollisionshantering kan gå till. Även här har rapporten först en undersökande del för att sedan beskriva en specifik metod i detalj som implementeras i kodbiblioteket. Examensarbetet resulterar i slutändan i en grundläggande interaktiv simuleringsmiljö för mjuka deformerbara objekt i form av ett kodbibliotek.</p>
|
4 |
Estudo biomecânico de três técnicas de partida para provas ventrais de natação-abordagem cinemática e dinâmicaCruz, Maria João Bezerra January 2000 (has links)
No description available.
|
5 |
Μελέτη κίνησης στερεού σώματος : Οι στρόβοι Euler και LagrangeΔιγενή, Γεωργία 26 July 2013 (has links)
Σκοπός της εργασίας είναι η παρουσίαση των εξισώσεων κίνησης του στερεού σώματος και η μελέτη δύο σημαντικών επιλύσιμων περιπτώσεων κίνησης στρόβου (Lagrange, Euler) .
Στo πρώτο κεφάλαιο περιγράφουμε την κίνηση ενός στερεού σώματος χρησιμοποιώντας την ομάδα στροφών. Αποδεικνύουμε το θεώρημα Chasles το οποίο μας δείχνει πως η μετακίνηση ενός στερεού μπορεί να αποσυντεθεί σε περιστροφή γύρω από έναν άξονα και μεταφορά πάνω σε αυτόν. Στη συνέχεια σκοπός μας είναι η κατανόηση της γωνιακής ταχύτητας ενός στερεού σώματος. Σημαντικό ρόλο σε αυτή την πορεία παίζει τόσο το αδρανειακό όσο και το ενσωματωμένο στο στερεό σύστημα αναφοράς. Έπειτα δίνονται οι ορισμοί της ενέργειας, της στροφορμής, της ροπής και οι εκφράσεις τους συναρτήσει γνωστών πλέον εννοιών από τα προηγούμενα. Το κεφάλαιο ολοκληρώνεται με την Δυναμική που έχει ως αντικείμενο μελέτης και έρευνας τη κίνηση των σωμάτων υπό την επίδραση δυνάμεων, και καταλήγει στην παρουσίαση των εξισώσεων Euler.
Στο δεύτερο κεφάλαιο στρέφουμε το ενδιαφέρον μας στις εφαρμογές και παρουσιάζουμε την επίλυση δύο σημαντικών προβλημάτων της μηχανικής: η κίνηση ενός συμμετρικού στρόβου που κινείται υπό την επίδραση του βάρους του έχοντας ένα σταθερό σημείο (ο στρόβος του Lagrange) και η κίνηση ενός στερεού που κινείται χωρίς την επίδραση εξωτερικών ροπών (ο στρόβος του Euler). Οι λύσεις εκφράζονται μέσω Ελλειπτικών Συναρτήσεων.
Τέλος, στο τρίτο κεφάλαιο παρατίθενται σχόλια στις εργασίες των Holmes - Marsden και των Heijden - Yagasaki που αφορούν την ύπαρξη χαοτικής συμπεριφοράς στην διαταραγμένη περίπτωση Lagrange, που αναφέρεται σε σχεδόν συμμετρικό στρόβο. / Σκοπός της εργασίας είναι η παρουσίαση των εξισώσεων κίνησης του στερεού σώματος και η μελέτη δύο σημαντικών επιλύσιμων περιπτώσεων κίνησης στρόβου (Lagrange, Euler) .
Στo πρώτο κεφάλαιο περιγράφουμε την κίνηση ενός στερεού σώματος χρησιμοποιώντας την ομάδα στροφών. Αποδεικνύουμε το θεώρημα Chasles το οποίο μας δείχνει πως η μετακίνηση ενός στερεού μπορεί να αποσυντεθεί σε περιστροφή γύρω από έναν άξονα και μεταφορά πάνω σε αυτόν. Στη συνέχεια σκοπός μας είναι η κατανόηση της γωνιακής ταχύτητας ενός στερεού σώματος. Σημαντικό ρόλο σε αυτή την πορεία παίζει τόσο το αδρανειακό όσο και το ενσωματωμένο στο στερεό σύστημα αναφοράς. Έπειτα δίνονται οι ορισμοί της ενέργειας, της στροφορμής, της ροπής και οι εκφράσεις τους συναρτήσει γνωστών πλέον εννοιών από τα προηγούμενα. Το κεφάλαιο ολοκληρώνεται με την Δυναμική που έχει ως αντικείμενο μελέτης και έρευνας τη κίνηση των σωμάτων υπό την επίδραση δυνάμεων, και καταλήγει στην παρουσίαση των εξισώσεων Euler.
Στο δεύτερο κεφάλαιο στρέφουμε το ενδιαφέρον μας στις εφαρμογές και παρουσιάζουμε την επίλυση δύο σημαντικών προβλημάτων της μηχανικής: η κίνηση ενός συμμετρικού στρόβου που κινείται υπό την επίδραση του βάρους του έχοντας ένα σταθερό σημείο (ο στρόβος του Lagrange) και η κίνηση ενός στερεού που κινείται χωρίς την επίδραση εξωτερικών ροπών (ο στρόβος του Euler). Οι λύσεις εκφράζονται μέσω Ελλειπτικών Συναρτήσεων.
Τέλος, στο τρίτο κεφάλαιο παρατίθενται σχόλια στις εργασίες των Holmes - Marsden και των Heijden - Yagasaki που αφορούν την ύπαρξη χαοτικής συμπεριφοράς στην διαταραγμένη περίπτωση Lagrange, που αναφέρεται σε σχεδόν συμμετρικό στρόβο.
|
6 |
Rigid, Melting, and Flowing FluidCarlson, Mark Thomas 29 October 2004 (has links)
This work focuses on the simulation of fluids as they transition between a solid and a liquid
state, and as they interact with rigid bodies in a realistic fashion. There is an underlying theme to
my work that I did not recognize until I examined my body of research as a whole. The equations
of motion that are generally considered appropriate only for liquids or gas can also be used to
model solids. Without adding extra constraints, one can model a solid simply as a fluid with a high
viscosity. Admittedly, this representation will only get you so far, but this simple representation can
create some very nice animations of objects that start as solids, and then melt into liquid over time.
Another way to represent solids with the fluid equations is to add extra constraints to the equations.
I use this representation in the parts of this work that focus on the two-way coupling of liquids with
rigid bodies. The coupling affects both how the liquid moves the rigid bodies, and how the rigid
bodies in turn affect the motion of the fluid. There are three components that are needed to allow
solids and fluids to interact: a rigid body solver, a fluid solver, and a mechanism for the coupling of
the two solvers.
The fluid solver used in this work was presented in [8]. This Melting and Flowing solver is
a fast and stable system for animating materials that melt, flow, and solidify. Examples of realworld
materials that exhibit these phenomena include melting candles, lava flow, the hardening of
cement, icicle formation, and limestone deposition. Key to this fluid solver is the idea that we can
plausibly simulate such phenomena by simply varying the viscosity inside a standard fluid solver,
treating solid and nearly-solid materials as very high viscosity fluids. The computational method
modifies the Marker-And-Cell algorithm [99] in order to rapidly simulate fluids with variable and
arbitrarily high viscosity. The modifications allow the viscosity of the material to change in space
and time according to variation in temperature, water content, or any other spatial variable. This
in turn allows different locations in the same continuous material to exhibit states ranging from the
absolute rigidity or slight bending of hardened wax to the splashing and sloshing of water.
The coupling that ties together the rigid body and fluid solvers was presented in [7], and is
known as the Rigid Fluid method. It is a technique for animating the interplay between rigid bodies
and viscous incompressible fluid with free surfaces. Distributed Lagrange multipliers are used to
ensure two-way coupling that generates realistic motion for both the solid objects and the fluid as
they interact with one another. The rigid fluid method is so named because the simulator treats
the rigid objects as if they were made of fluid. The rigidity of such an object is maintained by
identifying the region of the velocity field that is inside the object and constraining those velocities
to be rigid body motion. The rigid fluid method is straightforward to implement, incurs very little
computational overhead, and can be added as a bridge between current fluid simulators and rigid
body solvers. Many solid objects of different densities (e.g., wood or lead) can be combined in the
same animation.
The rigid body solver used in this work is the impulse based solver, with shock propagation
introduced by Guendelman et al. in [36]. The rigid body solver allows for collisions ranging from
completely elastic, where an object can bounce around forever without loss of energy, to completely
inelastic where all energy is spent in the collision. Static and dynamic frictional forces are also
incorporated. The details of this rigid body solver will not be discussed, but the small changes
needed to couple this solver to interact with fluid will be.
When simulating fluids, the fluid-air interface (free surface) is an important part of the simulation.
In [8], the free surface is modelled by a set of marker particles, and after running a simulation
we create detailed polygonal models of the fluid by splatting particles into a volumetric grid and
then render these models using ray tracing with sub-surface scattering. In [7], I model the free
surface with a particle level set technique [14]. The surface is then rendered by first extracting a triangulated
surface from the level set and then ray tracing that surface with the Persistence of Vision
Raytracer (http://povray.org).
|
7 |
Análise biomecânica do flick-flick na trave olímpicaCouceiro, Maria Teresa Fernandes January 2000 (has links)
No description available.
|
8 |
Análise das interacções de uma técnica base em trampolis com quatro técnicas complexasMoreira, Pelágio January 2000 (has links)
No description available.
|
9 |
Estudo piloto da variabilidade do padrão de execução técnica no decurso da prova de 400 metros livres em nataçãoReis, António Manuel Malvas January 2002 (has links)
No description available.
|
10 |
[en] LIBRATION AND TUMBLING OF A RIGID BODY / [pt] MOVIMENTO DE ROTAÇÃO SEM RESTRIÇÃO DE UM CORPO RÍGIDODANNY HERNAN ZAMBRANO CARRERA 26 November 2010 (has links)
[pt] Um problema bem conhecido da Mecânica Clássica consiste no estudo do
movimento de um corpo no espaço, especialmente quando o problema é
conservativo e livre de forças. Este trabalho utiliza ferramentas modernas da
Dinâmica para interpretar os movimentos com grande amplitude, ultrapassando os
limites de estabilidade obtidos pelo conceito de Lyapunov. O problema da
singularidade numérica que ocorre utilizando-se ângulos de Cardan pode ser
eliminado com a descrição por quatérnios. A versatilidade dos quatérnios na
Dinâmica é discutida, assim como a dificuldade do estudo do movimento próximo
aos pontos de singularidade usando ângulos cardânicos. Enfatiza-se a influência
dos momentos principais de inércia na estabilidade do movimento. Obtém-se um
valor numérico da energia cinética mínima necessária para que o movimento
atravesse o limite de estabilidade. O giroscópio Magnus é um instrumento
educacional muito conveniente no estudo do movimento de um corpo livre no
espaço. O rotor desse giroscópio representa um corpo em uma suspensão
cardânica com anel externo e interno, o que dá ao corpo a liberdade de movimento
necessária. Desenvolve-se nesta tese o modelo matemático de um corpo em
suspensão cardânica, incluindo-se o atrito existente entre os componentes do
sistema mecânico (além de considerar as inércias do rotor e dos anéis ou quadros).
O problema da singularidade na descrição com rotações seqüenciais, que existe no
caso de um corpo no espaço, é eliminado quando se considera a inércia dos
quadros. Estuda-se o comportamento do giroscópio ao longo do tempo, sem
outras restrições, considerando a perda de energia cinética devido ao atrito.
Avalia-se também como a mudança dos momentos de inércia influencia a
estabilidade do movimento do sistema. / [en] A well known conservative problem in Classical Mechanics consists in the
force free motion of a body in space. This work uses modern tools from Dynamics
to interpret great amplitude movements crossing the limits of stability in the
concept of Lyapunov. The numerical singularity that arises with the use of Cadan
angles can be eliminated with quaternion representation. The versatility of
quaternions in Dynamics is discussed, as well as the difficulty in investigating the
motion near to singularity points when using cardanic angles. The influence of the
principal moments of inertia on the stability of the motion is discussed. A
numerical value for the minimal kinetic energy to cross the stability border is
obtained. The Magnus Gyroscope is an educational instrument, very convenient in
the study of the motion of a free body in outer space. The rotor of this gyroscope
represents the body on a cardanic suspension with outer and inner ring, which
gives the body the necessary freedom of motion. In this work a mathematical
model of a body in cardanic suspension is generated, including friction between
gimbals and rotor (besides considering the inertia of these components). The
singularity problem in the free body solution is eliminated when the inertia of the
gimbals is considered. Long term behavior of the unrestricted motion is
investigated, considering the loss of kinetic energy due to friction. It is also shown
how the change of moments of inertia due to the gimbals influences the stability
of the motion of system.
|
Page generated in 0.0458 seconds