• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 4
  • 3
  • 2
  • Tagged with
  • 34
  • 34
  • 14
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effects of fractures on seismic waves in poroelastic formations

Brajanovski, Miroslav January 2004 (has links)
Naturally fractured reservoirs have attracted an increased interest of exploration and production geophysics in recent years. In many instances, natural fractures control the permeability of the reservoir, and hence the ability to find and characterize fractured areas of the reservoir represents a major challenge for seismic investigations. In fractured and porous reservoirs the fluid affects elastic anisotropy of the rock and also causes significant frequency dependent attenuation and dispersion. In this study we develop a mathematical model for seismic wave attenuation and dispersion in a porous medium in a porous medium with aligned fractured, caused by wave induced fluid flow between pores and fractures. In this work fractures in the porous rock are modelled as very thin and highly porous layers in a porous background. Dry highly porous materials have low elastic moduli; thus dry skeleton of our system contains thin and soft layers, and is described by linear slip theory. The fluid saturated rock with high-porasity layers is described by equations of poroelasticity with periodically varying coefficients. These equations are analyzed using propagator matrix approach commonly used to study effective properties of layered system. This yields a dispersion equation for a periodically layered saturated porous medium taking into account fluid communication between pore spaces of the layers. Taking in this dispersion equation a limit of small thickness for high-porosity layers gives the velocity and attenuation as a function of frequency and fracture parameters. The results of this analysis show that porous saturated rock with aligned fractures exhibits significant attenuation and velocity dispersion due to wave induced fluid flow between pores and fractures. / At low frequencies the material properties are equal to those obtained by anisotropic Gassmann theory applied to a porous material with linear-slip, interfaces. At high frequencies the results are equivalent to those for fractures with vanishingly small normal slip in a solid (non-porous) background. The characteristic frequency of the attenuation and dispersion depends on the background permeability, fluid viscosity, as well as fracture density and spacing. The wave induced fluid flow between pores and fractures considered in this work has exactly the same physical nature as so-called squirt flow, which is widely believed to by a major cause of seismic attenuation. Hence, the present model can be viewed as a new model of squirt-flow attenuation, consistent with Biot’s theory of poroelasticity. The theoretical results of this work are also limited by the assumption of periodic distribution of fractures. In reality fractures may be distributed in a random fashion. Sensitivity of our results to the violation of the periodicity assumption was examined numerically using reflectivity modelling for layered poroelastic media. Numerical experiments for a random distribution of fractures of the same thickness still show surprisingly good agreement with theoretical results obtained for periodic fractures. However this agreement may break down if fracture properties are allowed to vary from fracture to fracture. The results of this thesis show how to compute frequency dependences of attenuation and velocity caused by wave induced fluid flow between pores and fractures. These results can be used to obtain important parameters of fractured reservoirs, such as permeability and fracture weakness, from attenuation measurements. The major requirement for the success of such an approach is that measurements must be made in over a relatively broad frequency range.
12

An investigation of anisotropy using AVAZ and rock physics modeling in the Woodford Shale, Anadarko Basin, OK

Lamb, Alexander Peter Joseph 20 July 2012 (has links)
The Woodford Shale formation is currently an important unconventional gas resource that extends across parts of the mid-continent of the United States. A resource shale acts as source, seal, and reservoir, and its characterization is vital to successful exploitation and production of hydrocarbons. This work is a surface seismic observation and investigation of the seismic anisotropy present in the Woodford Shale formation in the Anadarko Basin, Oklahoma. One of the main causes of anisotropy here is commonly believed to be vertical natural fractures (HTI) and horizontal alignment of clay minerals (VTI). Understanding the natural fracture orientation and density, as well as regional stress orientation, is important to the development of hydraulic fracturing programs in shales, such as the Woodford, producing natural gas. Dipole sonic log measurements in vertical boreholes suggest that the Woodford does possess vertical transverse isotropy (VTI), due possibly to horizontal layering or aligned clay minerals. Further, the borehole logs do not indicate horizontal transverse isotropy (HTI) associated with fracturing in the Woodford interval. An amplitude varying with angle and azimuth (AVAZ) analysis was applied to 3-D surface seismic data in the Anadarko Basin and shows the dipole sonic logs may not be completely characterizing the anisotropy observed in the Woodford. Once this apparent contradiction was discovered, additional work to characterize the fractures in the formation was undertaken. A petrophysical model based on the borehole data of the Woodford Shale was created, combining various techniques to simulate the rock properties and behavior. With a more complete rock physics model, a full stiffness tensor for the rock was obtained. From this model, synthetic seismic data were generated to compare to the field data. Furthermore, analytic equations were developed to relate crack density to AVAZ response. Currently, the application of this AVAZ method shows fracture orientation and relative variations in fracture density over the survey area. This work shows a direction for a quantified fracture density because the synthetic seismic data has a quantified fracture density at its basis. This allowed for a relationship to be established between explicit fracture parameters (such as fracture density) and AVAZ results and subsequently may be used to create regional descriptions of fracture and/or stress orientation and density. / text
13

SEISMIC TIME-LAPSE MONITORING OF POTENTIAL GAS HYDRATE DISSOCIATION AROUND BOREHOLES - COULD IT BE FEASIBLE? A CONCEPTUAL 2D STUDY LINKING GEOMECHANICAL AND SEISMIC FD MODELS

Pecher, Ingo A., Freij-Ayoub, Reem, Yang, Jinhai, Anderson, Ross, Tohidi, Bahman, MacBeth, Colin, Clennell, Ben 07 1900 (has links)
Monitoring of the seafloor for gas hydrate dissociation around boreholes during hydrocarbon production is likely to involve seismic methods because of the strong sensitivity of P-wave velocity to gas in sediment pores. Here, based on geomechanical models, we apply commonly used rock physics modeling to predict the seismic response to gas hydrate dissociation with a focus on P-impedance and performed sensitivity tests. For a given initial gas hydrate saturation, the mode of gas hydrate distribution (cementation, frame-bearing, or pore-filling) has the strongest effect on P-impedance, followed by the mesoscopic distribution of gas bubbles (evenly distributed in pores or “patchy”), gas saturation, and pore pressure. Of these, the distribution of gas is likely to be most challenging to predict. Conceptual 2-D FD wave-propagation modeling shows that it could be possible to detect gas hydrate dissociation after a few days.
14

A Rock Physics Based Investigation of Pore Structure Variations Associated with a CO2 Flood in a Clastic Reservoir, Delhi, LA

Davidson, Daniel 16 December 2013 (has links)
The permeability in siliclastic rocks can vary due to different pore geometries. The pore properties of a formation can also have significant effects on reflection coefficient. The pore structure of clastic rock may be predicted from a wave reflection using mathematical models. Biot-Gassmann and Sun’s equations are examples of two models which were used in this research to quantify the pore property. The purpose of this thesis is to measure variations in porosity and permeability using 3-D time lapsed seismic during a CO_(2) flood. CO_(2) sequestration EOR will most likely cause permanent diagenetic effects that will alter pore geometry and permeability. This research shows compelling evidence that the pore structure changes in an active CO_(2) flood at the Delhi Holt-Bryant reservoir can be measured with acoustic data. The pore property change is measured by using the Baechle ratio, the Gassmann model, and the Sun framework flexibility factor. The change in the pore properties of the formation also indicates a increase in the permeability of the reservoir as a result of CO_(2) interaction.
15

Wellbore seismic and core sample measurement analysis: integrated geophysical study of the Lake Bosumtwi impact structure, Ghana

Meillieux, Damien Yves Justin Unknown Date
No description available.
16

Wellbore seismic and core sample measurement analysis: integrated geophysical study of the Lake Bosumtwi impact structure, Ghana

Meillieux, Damien Yves Justin 11 1900 (has links)
Wellbore seismic measurements were recorded in the Lake Bosumtwi impact structure, Ghana, in 2004. A full range of petrophysical measurements were also performed in the laboratory on core samples from the same boreholes. The Vertical Seismic Profile shows low velocities for both P and S waves in the hardrock basement of the crater. Although we were expected to locate fractures within the rock, no upgoing waves were detected. Density and porosity measurements on the core samples indicate higher than normal porosity in the impact damaged rocks. Mercury porosimetry and SEM analysis characterized the pores as impact induced microcracks. These microcracks are most likely the reason for the low velocities observed on the seismic profiles, the in situ sonic logs, and the seismic velocity measurements on the core samples. Furthermore our laboratory P and S velocities measurements indicate a strong heterogeneity within the impactites. / Geophysics
17

Modelagens teóricas e empíricas aplicadas à investigação da conexão entre as propriedades petrofísicas e elásticas em rochas carbonáticas / Theoretical and empirical models applied to the investigation of connection between the petrophysical and elastic properties on carbonate rocks

Abreu, Elita Selmara de 17 August 2018 (has links)
Orientadores: Sandro Guedes de Oliveira, Lúcia Duarte Dillon / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-17T17:53:23Z (GMT). No. of bitstreams: 1 Abreu_ElitaSelmarade_M.pdf: 3986219 bytes, checksum: 3254aa4fe691af01904819c1fb348ada (MD5) Previous issue date: 2010 / Resumo: O principal propósito dessa dissertação é estudar modelos de meio efetivo de física de rochas que conecte as propriedades petrofísicas e as propriedades elásticas, assim como a sua aplicação na investigação dessas propriedades em rochas carbonáticas. Inicialmente será feita uma introdução a alguns modelos de física de rochas para meio efetivo, conhecidos como modelo de Voigt-Reuss-Hill, modelo de Kuster & Toksöz, modelo Diferencial de Meio Efetivo e relação de Gassmann, com objetivo de estabelecer os parâmetros que serão medidos e utilizados no desenvolver do trabalho. Após essa parte introdutória, baseado no modelo de Xu-Payne, foram realizadas uma série de análises de atributos geométricos, como a distribuição de tipos de poros, obtidas através de lâminas petrográficas com intuito de descrever a correlação entre as propriedades petrofísicas e elásticas e assim poder calibrar o modelo teórico utilizado na predição dessas propriedades. Dessa forma, o modelo calibrado passa a desempenhar um papel mais condizente com o sistema poroso da rocha permitindo uma melhor correlação entre os parâmetros elásticos e petrofísicos. Os resultados obtidos mostram que a utilização da informação de lâminas petrográficas, na parametrização do modelo, torna o método mais robusto na predição e conexão das propriedades elásticas e petrofísicas de rochas carbonáticas, tornando confiável a mudança de escala rocha-perfil, bem como possibilitando a predição qualitativa de propriedade permo-porosas a partir da velocidade da rocha / Abstract: The main purpose of this dissertation is to study rock physics effective models that connect the petrophysics and elastic properties as well as its application on the investigation of these properties on carbonate rocks. Firstly, we make an introduction to some rock physics of effective models as: Voig-Reuss-Hill, Kuster&Toksöz, Differential Effective Medium, Gassmann¿s Relation, aiming at establishing the parameters that will be measured and used latter. After this introductory part and based on the Xu-Payne model, several geometric factors analysis was done like pore types distribution, obtained by thin sections, with the intention of describing the correlation between the petrophysics and elastic properties. In this way, the model becomes more compatible with the rock porous medium, allowing a better correlation between the petrophysics and elastic parameters. Our results show that using the thin section information on the model parametrization, the predictability and connectivity of petrophysics and elastic properties applied to carbonate rocks become more robust, making trustable the upscale rock-well log and also enabling the permo-porosity properties prediction, in a qualitative way, through the velocity measurements / Mestrado / Física / Mestra em Física
18

Etude des propriétés physiques et mécaniques des argilites : de la déformation en laboratoire aux failles naturelles / Physical and mechanical study of shales properties : from laboratory deformation to natural faults

Bonnelye, Audrey 12 May 2016 (has links)
Les argilites, sont définies comme étant des roches comportant une large fraction de minéraux argileux. Leurs propriétés physiques et mécaniques présentent un intérêt pour l’étude du comportement hydro-mécanique des failles dans la partie supérieure de la croûte mais aussi pour la compréhension des roches couvertures de réservoirs d’hydrocarbures ou pour l’expertise de la pérennité du stockage de déchets radioactifs.Cette thèse propose deux approches afin de comprendre l’organisation de la déformation dans ce type de matériau, une première purement mécanique sur des échantillons intacts et la seconde s’intéressant aux propriétés physiques de matériaux déformés. Pour cela, nous avons étudié les argilites de Tournemire (Tunnel expérimental de l'IRSN, Aveyron, France).La première partie consiste en une série d’essais triaxiaux. Nous avons déterminé les enveloppes de rupture de trois groupes d’échantillons carottés avec des orientations différentes par rapport au litage (0°, 45°, et 90°). Pour chaque orientation, sept expériences ont été réalisées à différentes pressions de confinement (2.5, 5, 10, 20, 40, 80, 160 MPa). L’influence de la vitesse de déformation a été établie en comparant des expériences réalisées avec des vitesses de déformation différentes (10-7 s-1 et 10-5 s-1). Pendant les expériences, les vitesses d’ondes P et S ont été enregistrées selon différents angles par rapport au litage afin de quantifier l’évolution de l’anisotropie des propriétés élastiques.Cette partie permet de mettre en évidence l’importance de l’orientation du litage par rapport à la contrainte principale sur la résistance mécanique de nos échantillons. De plus, un modèle micromécanique basé sur le « wing crack » permet d’expliquer l’anisotropie mécanique de nos argilites par l’anisotropie de la ténacité KIC.Par ailleurs, on constate que l’évolution de l’anisotropie des propriétés élastiques dépend elle aussi de l’orientation considérée. Lors de la compression, l’orientation 90° présente d’importantes variations pouvant aller jusqu’à une inversion de l’anisotropie, alors que les vitesses n’évoluent que très peu pour l’orientation 0°. Ces variations ont été quantifiées par les paramètres de Thomsen. L’étude des vitesses élastiques et celle des microstructures, permettent de mettre en évidence l’importance des processus plastiques comme la réorientation des minéraux au cours de la déformation.La seconde partie consiste en une étude pétrophysique (vitesses des ondes P, ASM, densité, saturation, porosité) d’échantillons provenant d’un forage traversant une zone de faille. Le but est de quantifier la variation de ces propriétés à l’approche du cœur de faille.Un protocole d’échantillonnage et de mesure a été mis en place. Le protocole comporte une première série de mesures directement sur le terrain afin de s’affranchir des problématiques liées à la préservation des échantillons (notamment pour les mesures de porosité/densité/saturation). Par la suite, des échantillons ont été prélevés pour réaliser des mesures à la fois dans le cadre de cette thèse (vitesses des ondes P et ASM) mais aussi dans d’autres laboratoires (étude de la composition minéralogique, CT-scan).A partir des observations, on caractérise :• Une zone saine caractérisée par des échantillons ne présentant pas ou très peu de fracturation• Une zone endommagée qui présente un grand nombre de fractures calcifiées• Une zone de cœur caractérisée par une déstructuration totale (pas de bedding apparent) et des variations de couleur.Notre étude met en évidence une signature physique propre à chaque zone de cette faille avec notamment une diminution de l’anisotropie des échantillons en zone endommagée fortement marquée. De plus, des mécanismes de rotation de la stratigraphie similaires à ceux observés à l’échelle des microstructures lors de la déformation expérimentale ont été observés. / Shales or clays are defined as rock having a large proportion of clay minerals. Their physical and mechanical properties are of interest for the study of the hydro-mechanical behavior of faults in the uppermost crust but also for the understanding of the cap rocks of hydrocarbon reservoirs or for the expertise of the durability of radioactive waste storage.This thesis proposes two complementary approaches to understand the organization of the deformation in this type of material, a first purely mechanical on undisturbed samples and the second focusing on the physical properties of deformed materials. During this thesis, we studied Tournemire shales (IRSN tunnel, Aveyron, France).The first part consists in triaxial tests. We determined the failure envelopes of three sets of core samples with different orientations with respect to bedding (0 °, 45 ° and 90 °). For each orientation, seven experiments were performed at different confining pressures (2.5, 5, 10, 20, 40, 80, 160 MPa). The influence of the strain rate was determined by comparing experiments with different strain rates extending over two orders of magnitude (between 〖10〗^(-7) s^(-1) and 〖10〗^(-5) s^(-1)). During the experiments, the P and S wave velocities were recorded from different angles with respect to the bedding to quantify the evolution of the anisotropy of the elastic properties according to the imposed stress.This section allows to highlight the importance of the orientation of bedding relatively to the principal stress applied on our samples. It is noted for example that the weakest orientation is 45 ° and 90 ° the strongest orientation. In addition, a micromechanical model based on the "wing crack" theory helps to explain the mechanical anisotropy of our argillites by the anisotropy of the fracture toughness K_Ic.Moreover, it is found that changes in the anisotropy of the elastic properties also depends on the bedding orientation. During compression, the 90 ° orientation has significant variations up to a reversal of the anisotropy, whereas the elastic wave velocities show little changes for 0 ° orientation. These variations were quantified by Thomsen parameters. The study of elastic velocities and of microstructures of our samples highlight the importance of the plastic processes such as reorientation of minerals during deformation.The second part consists of a petrophysical study (P wave velocities, ASM, density, saturation, porosity) of samples from a borehole drilled through a fault zone. The goal here is to quantify the variation of these properties as we approach the fault core.A protocol of sampling and measurement was established to realize a complete study of drillings. The protocol includes a first serie of measures directly in the field in order to overcome the problems linked to the preservation of samples (especially for porosity measurements / density / saturation). Subsequently, samples were taken for measurements both in the context of this thesis (P wave velocities and ASM), but also in other laboratories (study of the mineralogical composition, CT-scan).Three fault zones were identified from field observations:• An intact zone characterized by samples with no or very little fracturing• A damaged zone that includes a large number of calcified fractures• A fault core zone characterized by a complete breakdown (no apparent bedding) and color variations.Although these areas were determined on observation criteria, our study demonstrates an own physical signature for each zone of this fault with an important decrease in the anisotropy of the samples from fault core. In addition, bedding rotation with similar mechanisms to those observed at the microstructural scale during the experimental deformation was observed.
19

Development of Resource Evaluation Technology by Integration of Geophysical Exploration Data and Rock Physics / 物理探査データと岩石物理学の統合による資源評価技術の開発

Ohta, Yusuke 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23175号 / 工博第4819号 / 新制||工||1753(附属図書館) / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 小池 克明, 教授 林 為人, 准教授 柏谷 公希 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
20

MICROSTRUCTURAL CONTROLS ON MACRO-SCALE PROPERTIES OF ROCK

Liyang Jiang (12476667) 01 June 2022 (has links)
<p>Two longstanding goals in subsurface science are to induce fractures with a desired geometry to adaptively control the interstitial geometry of existing fractures in response to changing subsurface conditions. Many energy and water-related engineering applications that use induced fractures to withdraw and inject fluids from subsurface reservoirs occur in some sedimentary rock.  Sedimentary rock such as shales often exhibit anisotropic mechanical properties because of bedding, layering and mineral texture.  These structural and textural features also affect fracture formation and in turn the resulting fracture geometry. Understanding the interplay between the microscopic mineral fabric and structure and how it effects fracture geometry is important for the prediction of the geometry of induced fractures and to the determination of the most ideal conditions for maximizing energy production and minimizing leaks from sequestration sites in the subsurface. </p> <p><br></p> <p>This Ph.D. thesis research focuses on the formation and geometry of fractures in anisotropic rock and the identification of geophysical signatures of fracture formation using additively manufactured gypsum rock analogs. Specifically, the work is grouped into three topics: (1) material controls on fracture geometry, toughness and roughness in additively manufactured rocks; (2) acoustic emissions (AE) during fracture formation in anisotropic additively manufactured rocks; and (3) determination of the effect of fluid-filled oriented voids in fractures on compressional to shear wave conversions. </p> <p><br></p> <p>For topic (1), unconfined compressive strength (UCS), Brazilian and 3-point bending (3PB) tests under pure and mixed mode mechanical tests were performed on cast and 3D printed gypsum samples that were characterized using 3D Xray microscopy, Xray Diffraction and SEM to examine the micro-structure of the samples. Research on topic 1 discovered microstructural controls on fracture surface roughness and the failure behavior of anisotropic rock and that the failure mode (tensile, mixed mode I and II, mixed mode I and III) affects the fracture propagation path and the surface roughness which is controls to the flow paths through a fracture. The results suggest that detailed mineralogical studies of mineral texture/fabric in laboratory or core samples is important to unravel failure strength, surface roughness, and how fractures propagate in layered geological media. </p> <p><br></p> <p>For topic (2), UCS tests were performed with concurrent measurements of acoustic emissions (AE) on cylindrical specimens: cast gypsum (CG) samples, and 3D printed (3DP) samples with five different orientations of bassanite layer and gypsum texture relative to the loading direction. Mechanical properties and induced fracture surface information were compared with the collected the AE signals to study if there is a way to tell the differences between the induced fracture surfaces with the AE signals patterns together with loading data. Examination of the AE signal amplitude from post-peak loading revealed that more ductile behavior was associated with more AE events that occurred over a longer period of time, and the resultant fracture surfaces were rougher than for narrow time distributions of events. </p> <p><br></p> <p>For topic (3), a detail study of fracture void orientation was performed using ultrasonic compressional, P, and shear, S, waves to determine how energy is partitioned when P-to-S or S-to-P conversions occur for waves normally incident on an air-filled or fluid-filled fracture. In this study, experiments and computer simulations were performed to demonstrate the link among cross-coupling stiffness, micro-crack orientation and energy partitioning into P, S, and P-S/S-P wave. The cross-coupling stiffness was created by 3D printing samples with linear arrays of micro-cracks oriented at  $0^o$, $\pm15^o$, $\pm30^o$, $\pm45^o$, $\pm60^o$, $\pm75^o$, and $90^o$. For $45^o$ orientation, measurements were made on air-filled and fluid-filled (silicon oil). For the air-filled fractures, the observed energy partitioning matched the simulated behavior obtained from discontinuous Galerkin simulations. Information on local fracture geometry is contained in the far-field waves. When filled with a viscous fluid, the P- and S- waves amplitude exhibited slight increases and decreases, respectively. The P-to-S converted mode amplitude decreased 30\% with an increase in fluid viscosity from 1–300kcSt. This suggests that P-S converted mode provides a potential method to remotely probe changes in fluid viscosity in fractures. </p> <p><br></p> <p>The work from the 3 research topics demonstrated that micro-scale structure impacts macroscale behavior and signals used for monitoring the condition of a rock. Additively manufactured samples enabled the exploration and determination of (1) the impact of mineral fabric orientation in layered media on failure load, fracture propagation path, and fracture surface roughness, (2) the sensitivity of P-to-S conversions to fluid viscosity, and (3) how oriented voids within a fracture effect energy partitioning. These research findings advances our current understanding of role microscopic properties and structure on the generation, propagation and geometry of induced fractures in anisotropic rock, and help to identify the best imaging modalities to use to identify the seismic signatures of the viscosity of fluids in fractures with oriented voids. These contributions will help unravel the complex behavior often observed in natural rock that is structurally and compositionally complex with features and heterogeneity.  </p> <p><br></p>

Page generated in 0.0563 seconds