• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 3
  • 2
  • 1
  • Tagged with
  • 29
  • 29
  • 13
  • 13
  • 10
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Accélération matérielle pour l’imagerie sismique : modélisation, migration et interprétation / Hardware acceleration for seismic imaging : modeling, migration and interpretation

Abdelkhalek, Rached 20 December 2013 (has links)
La donnée sismique depuis sa conception (modélisation d’acquisitions sismiques), dans sa phase de traitement (prétraitement et migration) et jusqu’à son exploitation pour en extraire les informations géologiques pertinentes nécessaires à l’identification et l’exploitation optimale des réservoirs d’hydrocarbures (interprétation), génère un volume important de calculs. Nous montrons dans ce travail de thèse qu’à chacune de ces étapes l’utilisation de technologies accélératrices de type GPGPU permet de réduire radicalement les temps de calcul tout en restant dans une enveloppe de consommation électrique raisonnable. Nous présentons et analysons les éléments sous-jacents à ces performances. L’importance de l’utilisation de motifs d’accès mémoire adéquats est particulièrement mise en exergue étant donné que l’accès à la mémoire représente le principal goulot d’étranglement pour les algorithmes abordés. Nous reportons des facteurs d’accélération de l’ordre de 40 pour la modélisation sismique par résolution de l’équation d’onde par différences finies (brique de base pour la modélisation et l’imagerie sismique) et entre 8 et 113 pour le calcul d’attributs sismiques. Nous démontrons que l’utilisation d’accélérateurs matériels élargit considérablement le champ du possible, aussi bien en imagerie sismique (modélisation de nouveaux types d’acquisitions à grande échelle) qu’en interprétation (calcul d’attributs complexes sur station de travail, paramétrage interactif des calculs, etc.). / During the seismic imaging workflow, from seismic modeling to interpretation, processingseismic data requires a massive amount of computation. We show in this work that, at eachstage of this workflow, hardware accelerators such as GPUs may help reducing the time requiredto process seismic data while staying at reasonable energy consumption levels.In this work, the key programming considerations needed to achieve good performance are describedand discussed. The importance of adapted in-memory data access patterns is particularlyemphasised since data access is the main bottleneck for the considered algorithms. When usingGPUs, speedup ratios of 40× are achieved for FDTD seismic modeling, and 8× up to 113× forseismic attribute computation compared to CPUs.
12

Etude de l'adéquation des machines Exascale pour les algorithmes implémentant la méthode du Reverse Time Migation / Preparing depth imaging applications for Exascale challenges and impacts

Farjallah, Asma 16 December 2014 (has links)
La caractérisation des applications en vue de les préparer pour les nouvelles architectures et les porter sur des systèmes très étendus est une étape importante pour pouvoir anticiper les modifications nécessaires. Comme les machines Exascale sont prévues pour la période 2018-2020, l'étude des applications et leur préparation pour ces machines s'avèrent donc essentielles. Nous nous intéressons aux applications d'imagerie sismique et en particulier à l'application Reverse Time Migration (RTM) car elle est très utilisée par les pétroliers dans le cadre de l'exploration sismique.La première partie de nos travaux a porté sur l'étude du cœur de calcul de l'application RTM qui consiste en un calcul de différences finies dans le domaine temporel (FDTD). Nous avons caractérisé cette partie de l'application en soulevant les aspects architecturaux des machines actuelles ayant un fort impact sur la performance, notamment les caches, les bandes passantes et le prefetching. Cette étude a abouti à l'élaboration d'un modèle de performance permettant de prédire le trafic DRAM des FDTD. La deuxième partie de la thèse se focalise sur l'impact de l'hétérogénéité et le parallélisme sur la FDTD et sur RTM. Nous avons choisi l'architecture manycore d’Intel, Xeon Phi, et nous avons étudié une implémentation "native" et une implémentation hétérogène et hybride, la version "symmetric". Enfin, nous avons porté l'application RTM sur un cluster hétérogène, Stampede du Texas Advanced Computing Center (TACC), où nous avons effectué des tests de scalabilité allant jusqu'à 64 nœuds contenant des coprocesseurs Xeon Phi et des processeurs Sandy Bridge ce qui correspond à presque 5000 cœurs / As we are expecting Exascale systems for the 2018-2020 time frame, performance analysis and characterization of applications for new processor architectures and large scale systems are important tasks that permit to anticipate the required changes to efficiently exploit the future HPC systems. This thesis focuses on seismic imaging applications used for modeling complex physical phenomena, in particular the depth imaging application called Reverse Time Migration (RTM). My first contribution consists in characterizing and modeling the performance of the computational core of RTM which is based on finite-difference time-domain (FDTD) computations. I identify and explore the major tuning parameters influencing performance and the interaction between the architecture and the application. The second contribution is an analysis to identify the challenges for a hybrid and heterogeneous implementation of FDTD for manycore architectures. We target Intel’s first Xeon Phi co-processor, the Knights Corner. This architecture is an interesting proxy for our study since it contains some of the expected features of an Exascale system: concurrency and heterogeneity.My third contribution is an extension of the performance analysis and modeling to the full RTM. This adds communications and IOs to the computation part. RTM is a data intensive application and requires the storage of intermediate values of the computational field resulting in expensive IO accesses. My fourth contribution is the final measurement and model validation of my hybrid RTM implementation on a large system. This has been done on Stampede, a machine of the Texas Advanced Computing Center (TACC), which allows us to test the scalability up to 64 nodes each containing one 61-core Xeon Phi and two 8-core CPUs for a total close to 5000 heterogeneous cores
13

Utilisation du bruit sismique pour l'imagerie de la croûte, du manteau et du noyau terrestre / Passive seismic imaging, source location and tomography

Poli, Piero 06 June 2013 (has links)
La corrélation de bruit sismique est aujourd'hui une technique largement utilise en sismologie. L'aspect attrayante de cette technique est lie a la possibilité d'obtenir une estimation de la fonction Green partout sur la surface de la Terre, aussi en absence de source sismique comme le tremblement de terre. Les ondes des surface ils sont facilement obtenu par corrélation de bruit, et elles sont très utiliser pour l'imagerie de la croute et du manteau superieur. Dans la possible observation des ondes de volume par corrélation de bruit, il peut avoir le potentielle pour résoudre aussi les structures de la Terre profonde.Dans la première partie de la thèse, on utilise les ondes de surface estime par corrélation de bruit sismique au fin de produire en modèle tomographique de la croute en Finlande.Dans la deuxième partie, on se focalise sur la nouvelle possibilité d'obtenir des ondes de volume par corrélation de bruit. Suite a la démonstration aue des ondes des volume son bien observe par corrélation de bruit a toutes les échelles, on utilise ces ondes pour l'imagerie de la Terre profonde. Ces nouveaux et prometteur résultats ils permettent d’incrémenter la connaissance de la structure profonde de la Terre, avec un incroyable augmentation de la résolution de la méthode d'imagerie. / Ambient seismic noise correlation technique is today widely applied in seismology. The attractive aspect of this method relies in the possibility of obtaining an estimated Green's function everywhere in the world, also in absence of explosions or earthquakes. As surface waves dominate the estimated Green's fucntion, they can be used for high-resolution imaging of the shallow Earth. Similar observation of body waves would provide the required resolution to solve the deeper Earth structures.In the first part of our work we focus on resolving the crustal structure of northern Finland. Using surface waves reconstructed from noise correlation, we reconstructed a threedimensional S waves model that gives acces to the ancient structures of the crust.In the second part we analyse how body waves can emerge from seismic noise correlation. We show that body waves travelling from regional to teleseismic distances are well reconstructed from noise correlation. As these waves contain information about the Earth structure they represent a new and original dataset to improve the knowledge of our planet.
14

Efficient computation of seismic traveltimes in anisotropic media and the application in pre-stack depth migration

Riedel, Marko 01 July 2016 (has links) (PDF)
This study is concerned with the computation of seismic first-arrival traveltimes in anisotropic media using finite difference eikonal methods. For this purpose, different numerical schemes that directly solve the eikonal equation are implemented and assessed numerically. Subsequently, they are used for pre-stack depth migration on synthetic and field data. The thesis starts with a detailed examination of different finite difference methods that have gained popularity in scientific literature for computing seismic traveltimes in isotropic media. The most appropriate for an extension towards anisotropic media are found to be the so-called Fast Marching/Sweeping methods. Both schemes rely on different iteration strategies, but incorporate the same upwind finite difference Godunov schemes that are implemented up to the second order. As a result, the derived methods exhibit high numerical accuracy and perform robustly even in highly contrasted velocity models. Subsequently, the methods are adapted for transversely isotropic media with vertical (VTI) and tilted (TTI) symmetry axes, respectively. Therefore, two different formulations for approximating the anisotropic phase velocities are tested, which are the weakly-anisotropic and the pseudo-acoustic approximation. As expected, the pseudo-acoustic formulation shows superior accuracy especially for strongly anisotropic media. Moreover, it turns out that the tested eikonal schemes are generally more accurate than anisotropic ray tracing approaches, since they do not require an approximation of the group velocity. Numerical experiments are carried out on homogeneous models with varying strengths of anisotropy and the industrial BP 2007 benchmark model. They show that the computed eikonal traveltimes are in good agreement with independent results from finite difference modelling of the isotropic and anisotropic elastic wave equations, and traveltimes estimated by ray-based wavefront construction, respectively. The computational performance of the TI eikonal schemes is largely increased compared to their original isotropic implementations, which is due to the algebraic complexity of the anisotropic phase velocity formulations. At this point, the Fast Marching Method is found to be more efficient on models containing up to 50 million grid points. For larger models, the anisotropic Fast Sweeping implementation gradually becomes advantageous. Here, both techniques perform independently well of the structural complexity of the underlying velocity model. The final step of this thesis is the application of the developed eikonal schemes in pre-stack depth migration. A synthetic experiment over a VTI/TTI layer-cake model demonstrates that the traveltime computation leads to accurate imaging results including a tilted, strongly anisotropic shale layer. The experiment shows further that the estimation of anisotropic velocity models solely from surface reflection data is highly ambiguous. In a second example, the eikonal solvers are applied for depth imaging of two-dimensional field data that were acquired for geothermal exploration in southern Tuscany, Italy. The developed methods also produce clear imaging results in this setting, which illustrates their general applicability for pre-stack depth imaging, particularly in challenging environments.
15

Depth-registration of 9-component 3-dimensional seismic data in Stephens County, Oklahoma

Al-Waily, Mustafa Badieh 04 September 2014 (has links)
Multicomponent seismic imaging techniques improve geological interpretation by providing crucial information about subsurface characteristics. These techniques deliver different images of the same subsurface using multiple waveforms. Compressional (P) and shear (S) waves respond to lithology and fluid variations differently, providing independent measurements of rock and fluid properties. Joint interpretation of multicomponent images requires P-wave and S-wave events to be aligned in depth. The process of identifying P and S events from the same reflector is called depth-registration. The purpose of this investigation is to illustrate procedures for depth-registering P and S seismic data when the most fundamental information needed for depth-registration – reliable velocity data – are not available. This work will focus on the depth-registration of a 9-component 3-dimensional seismic dataset targeting the Sycamore formation in Stephens County, Oklahoma. The survey area – 16 square miles – is located in Sho-Vel-Tum oilfield. Processed P-P, SV-SV, and SH-SH wave data are available for post-stack analysis. However, the SV-data volume will not be interpreted because of its inferior data-quality compared to the SH-data volume. Velocity data are essential in most depth-registration techniques: they can be used to convert the seismic data from the time domain to the depth domain. However, velocity data are not available within the boundaries of the 9C/3D seismic survey. The data are located in a complex area that is folded and faulted in the northwest part of the Ardmore basin, between the eastern Arbuckle Mountains and the western Wichita Mountains. Large hydrocarbon volumes are produced from stratigraphic traps, fault closures, anticlines, and combination traps. Sho-Vel-Tum was ranked 31st in terms of proved oil reserves among U.S. oil fields by a 2009 survey. I will interpret different depth-registered horizons on the P-wave and S-wave seismic data volumes. Then, I will present several methods to verify the accuracy of event-registration. Seven depth-registered horizons are mapped through the P-P and SH-SH seismic data. These horizons show the structural complexity that imposes serious challenges on well drilling within the Sho-Vel-Tum oil field. Interval Vp/Vs – a seismic attribute often used as lithological indicator – was mapped to constrain horizon picking and to characterize lateral stratigraphic variations. / text
16

Analyse de vitesse par migration itérative : vers une meilleure prise en compte des réflexions multiples / Iterative Migration Velocity Analysis : extension to surface-related multiple reflections

Cocher, Emmanuel 03 March 2017 (has links)
Les expériences de sismique active sont couramment utilisées pour estimer la valeur d'un modèle de vitesse de propagation desondes P dans le sous-sol. Les méthodes dites d'« analyse de vitesse par migration » ont pour but la détermination d'un macro-modèle de vitesse, lisse, et responsable de la cinématique de propagation des ondes. Dans une première étape de « migration », une image de réflectivité est obtenue à partir des données enregistrées en utilisant une première estimation du macro-modèle. Cette image dépend d’un paramètre additionnel permettant dans un second temps d’estimer la qualité du macro-modèle puis de l'améliorer. Les images de réflectivité obtenues par les techniques de migration classiques sont cependant contaminées par des artefacts, altérant la qualité de la remise à jour du macro-modèle. En particulier, elles ne prennent pas en compte les réflexions multiples, habituellement retirées des données avant traitement. Cette étape reste cependant délicate et on se prive alors de l'information supplémentaire contenue dans les multiples.Nous proposons dans cette étude une stratégie d’optimisation imbriquée en itérant l'étape de migration avant de remettre à jour le macro-modèle. La migration itérative produit des images de réflectivité satisfaisantes pour l'analyse de vitesse et s’étend naturellement aux réflexions multiples. Un désavantage de la méthode est son coût de calcul. Un pseudo-inverse de l'opérateur de modélisation est alors utilisé comme préconditionneur pour limiter le nombre d’itérations dans la boucle interne. Une autre difficulté est l'instabilité de la remise à jour du modèle de vitesse calculée pour des modèles de réflectivité successifs proches les uns des autres. Une nouvelle approche plus robustesse est proposée, valide aussi dans le cas de multiples. Son efficacité est testée sur des jeux de données synthétiques 2D. / Active seismic experiments are commonly used to recover a model of the P-wave propagation velocity in the subsurface. “Migration Velocity Analysis” techniques aim at deriving a smooth background velocity model controlling the kinematics of wave propagation. First, a reflectivity image is obtained by “migration” of observed data using a first estimate of the background velocity. This image depends on an additional “subsurface-offset” parameter allowing to assess the quality of the background velocity model with a focusing criterion and to correct it. However classical migration techniques do not provide a sufficiently accurate reflectivity image, leading to inconsistent velocity updates. In particular they do not take into account multiple reflections, usually regarded as noise and removed from the data before processing. Multiple removal is however a difficult step, and additional information contained in multiples is discarded.In this thesis, we propose to determine the reflectivity model by iterative migration before subsequent velocity analysis, leading to a nested optimisation procedure. Iterative migration yields accurate reflectivity image and extends naturally to the case of multiples. One of its disadvantages is the associated increased computational cost. To limit the number of iterations in the innerloop, a preconditioner based on a pseudo-inverse of the modelling operator is introduced. Another difficulty is the instability of the velocity update obtained with very close successive reflectivity models. We propose a modified approach, valid in the presence of multiples, and discussed through applications on 2D synthetic data sets.
17

Perturbations d'amplitude du bruit ambiant au droit des hétérogéneités : étude de faisabilité pour l'exploration et la surveillance de réservoirs multi-fluide / Ambient noise spectral amplitude distortions above heterogeneities : feasability study for multi-fluid reservoir exploration and monitoring

Kazantsev, Alexandre 03 December 2018 (has links)
L'objet de cette thèse est l'étude des possibles mécanismes élastiques expliquant l'amplification du bruit ambiant au droit de certains réservoirs multi-phasiques. Trois jeux de données sont traités. La signature spectrale observée d'un réservoir de vapeur géothermique est différente de celle d'un stockage de gaz. Dans une approche empirique, un algorithme de classification permet d'extraire et de cartographier les anomalies que l'on présume liées au réservoir. Un travail de modélisation est effectué pour tenter d'expliquer les anomalies mesurées. Dans les données réelles, une forte présence de modes supérieurs d'ondes de Rayleigh est détectée. On modélise numériquement en 2D la propagation de ces modes à travers un réservoir placé au sein d'une structure géologique réaliste. La réponse simulée du réservoir se révèle trop faible par rapport aux observations de terrain. Néanmoins, on parvient à inverser les faibles perturbations d'amplitude synthétiques pour la position du réservoir, dans des modèles de référence simples. Cette méthode pourrait être utilisable pour l'imagerie à partir de faibles variations d'amplitudes dans le cadre du monitoring. Pour ce qui est de fortes anomalies observées sur le terrain , il est à noter que les effets visco-élastiques, les effets 3D, et les effets liés à un éventuel champ incident diffus n'ont pas été pris en compte dans la modélisation. Ainsi ce travail n'exclut pas la possibilité de telles anomalies liées à la présence d'un réservoir. / This PhD work investigates the possible elastic mechanisms behind the ambient noise amplification above multi-phase fluid reservoirs. Three datasets are analysed above different reservoirs. The observed spectral signature is different in the gas storage and geothermal contexts. A non-supervised algorithm for amplitude spectrum classification is developed, allowing to extract and map the relevant attributes of a multi-phase fluid presence. As a first modelling step, a wavefield characterisation methodology is applied to determine the composition of the ambient noise. It reveals the presence of strong Rayleigh overtones. Numerical 2D elastic modelling is used to simulate the propagation of overtones across a reservoir within a realistic geological structure. The modelled reservoir response is too small compared to the real data. However, the small amplitude perturbations arising in the numerical simulations are successfully inverted for the position of the reservoir, in simple background models. The developed method could in theory be used for imaging small time-lapse amplitude variations (monitoring), despite the obstacles remaining to be overcome before a real-data application. Neither visco-elastic nor 3D effects are adressed. Thus this work does not exclude the possibility of strong reservoir-specific spectral anomalies.
18

Towards Reducing Structural Interpretation Uncertainties Using Seismic Data / Vers la réduction des incertitudes d'interprétation structurale à l'aide de données sismiques

Irakarama, Modeste 25 April 2019 (has links)
Les modèles géologiques sont couramment utilisés pour estimer les ressources souterraines, pour faire des simulations numériques, et pour évaluer les risques naturels ; il est donc important que les modèles géologiques représentent la géométrie des objets géologiques de façon précise. La première étape pour construire un modèle géologique consiste souvent à interpréter des surfaces structurales, telles que les failles et horizons, à partir d'une image sismique ; les objets géologiques identifiés sont ensuite utilisés pour construire le modèle géologique par des méthodes d'interpolation. Les modèles géologiques construits de cette façon héritent donc les incertitudes d'interprétation car une image sismique peut souvent supporter plusieurs interprétations structurales. Dans ce manuscrit, j'étudie le problème de réduire les incertitudes d'interprétation à l'aide des données sismiques. Particulièrement, j'étudie le problème de déterminer, à l'aide des données sismiques, quels modèles sont plus probables que d'autres dans un ensemble des modèles géologiques cohérents. Ce problème sera connu par la suite comme "le problème d'évaluation des modèles géologiques par données sismiques". J'introduis et formalise ce problème. Je propose de le résoudre par génération des données sismiques synthétiques pour chaque interprétation structurale dans un premier temps, ensuite d'utiliser ces données synthétiques pour calculer la fonction-objectif pour chaque interprétation ; cela permet de classer les différentes interprétations structurales. La difficulté majeure d'évaluer les modèles structuraux à l'aide des données sismiques consiste à proposer des fonctions-objectifs adéquates. Je propose un ensemble de conditions qui doivent être satisfaites par la fonction-objectif pour une évaluation réussie des modèles structuraux à l'aide des données sismiques. Ces conditions imposées à la fonction-objectif peuvent, en principe, être satisfaites en utilisant les données sismiques de surface (« surface seismic data »). Cependant, en pratique il reste tout de même difficile de proposer et de calculer des fonctions-objectifs qui satisfassent ces conditions. Je termine le manuscrit en illustrant les difficultés rencontrées en pratique lorsque nous cherchons à évaluer les interprétations structurales à l'aide des données sismiques de surface. Je propose une fonction-objectif générale faite de deux composants principaux : (1) un opérateur de résidus qui calcule les résidus des données, et (2) un opérateur de projection qui projette les résidus de données depuis l'espace de données vers l'espace physique (le sous-sol). Cette fonction-objectif est donc localisée dans l'espace car elle génère des valeurs en fonction de l'espace. Cependant, je ne suis toujours pas en mesure de proposer une implémentation pratique de cette fonction-objectif qui satisfasse les conditions imposées pour une évaluation réussie des interprétations structurales ; cela reste un sujet de recherche. / Subsurface structural models are routinely used for resource estimation, numerical simulations, and risk management; it is therefore important that subsurface models represent the geometry of geological objects accurately. The first step in building a subsurface model is usually to interpret structural features, such as faults and horizons, from a seismic image; the identified structural features are then used to build a subsurface model using interpolation methods. Subsurface models built this way therefore inherit interpretation uncertainties since a single seismic image often supports multiple structural interpretations. In this manuscript, I study the problem of reducing interpretation uncertainties using seismic data. In particular, I study the problem of using seismic data to determine which structural models are more likely than others in an ensemble of geologically plausible structural models. I refer to this problem as "appraising structural models using seismic data". I introduce and formalize the problem of appraising structural interpretations using seismic data. I propose to solve the problem by generating synthetic data for each structural interpretation and then to compute misfit values for each interpretation; this allows us to rank the different structural interpretations. The main challenge of appraising structural models using seismic data is to propose appropriate data misfit functions. I derive a set of conditions that have to be satisfied by the data misfit function for a successful appraisal of structural models. I argue that since it is not possible to satisfy these conditions using vertical seismic profile (VSP) data, it is not possible to appraise structural interpretations using VSP data in the most general case. The conditions imposed on the data misfit function can in principle be satisfied for surface seismic data. In practice, however, it remains a challenge to propose and compute data misfit functions that satisfy those conditions. I conclude the manuscript by highlighting practical issues of appraising structural interpretations using surface seismic data. I propose a general data misfit function that is made of two main components: (1) a residual operator that computes data residuals, and (2) a projection operator that projects the data residuals from the data-space into the image-domain. This misfit function is therefore localized in space, as it outputs data misfit values in the image-domain. However, I am still unable to propose a practical implementation of this misfit function that satisfies the conditions imposed for a successful appraisal of structural interpretations; this is a subject for further research.
19

Curvelet imaging and processing : an overview

Herrmann, Felix J. January 2004 (has links)
In this paper an overview is given on the application of directional basis functions, known under the name Curvelets/Contourlets, to various aspects of seismic processing and imaging. Key concepts in the approach are the use of (i) that localize in both domains (e.g. space and angle); (ii) non-linear estimation, which corresponds to localized muting on the coefficients, possibly supplemented by constrained optimization (iii) invariance of the basis functions under the imaging operators. We will discuss applications that include multiple and ground roll removal; sparseness-constrained least-squares migration and the computation of 4-D difference cubes.
20

Velocity model building by full waveform inversion of early arrivals & reflections and case study with gas cloud effect / Influence des ondes réfléchies sur l'inversion de formes d'onde : vers une meilleure compréhension des ondes réfléchies et leur utilisation dans l'inversion de formes d'onde

Zhou, Wei 30 September 2016 (has links)
L'inversion des formes d'onde (full waveform inversion, FWI) a suscité un intérêt dans le monde entier pour sa capacité à estimer de manière précise et détaillée les propriétés physiques du sous-sol. La FWI est généralement formulée sous la forme d'un problème d'ajustement des données par moindres carrés et résolus par une approche linéarisée utilisant des méthodes d'optimisation locales. Cependant, la FWI est bien connue de souffrir du problème de saut de phase rendant les résultats fortement dépendant de la qualité des modèles initiaux. L'inversion des formes d'ondes des arrivées réfléchies (reflection waveform inversion, RWI) a récemment été proposée pour atténuer ce problème en supposant une séparation d'échelle entre le modèle de vitesse lisse et le modèle de réflectivité à haut nombre d'onde. La formulation de RWI considère explicitement les ondes réfléchies afin d'extraire de ces ondes une information sur les variations lisses de vitesse des zones profondes. Cependant, la méthode néglige les ondes transmises qui contraignant les informations lisses de vitesse en proche surface.Dans cette thèse, une étude de la sensibilité en nombre d'ondes des méthodes de FWI et RWI a d'abord été revisitée dans le cadre de la tomographie en diffraction et des décompositions orthogonales. A partir de cette analyse, je propose une nouvelle méthode, à savoir l'inversion jointe des formes d'ondes transmises et réfléchies (joint full waveform inversion, JFWI). La méthode propose une formulation unifiée pour combiner la FWI des transmissions et la RWI pour les réflexions, donnant naturellement une sensibilité commune aux petits nombres d'onde venant des arrivées grand-angle et réfléchies. Les composantes à hauts nombres d'onde sont naturellement atténuées par la formulation. Pour satisfaire l'hypothèse de séparation d'échelle, j'utilise une paramétrisation du sous-sol basée sur la vitesse des ondes de compression et l'impédance acoustique. La complexité temporelle de cette approche est le double de la méthode de FWI classique et la requête mémoire reste la même.Une procédure d'inversion est ensuite proposée, permettant d'estimer alternativement le modèle de la vitesse du sous-sol par JFWI et l'impédance inversion de formes d'ondes réfléchies. Un exemple synthétique réaliste du modèle de Valhall est d'abord utilisé avec des données de streamer et à partir d'un modèle initial très lisse. Dans ce cadre, alors que la FWI converge vers un minimum local, la JFWI réussit à reconstruire un modèle de vitesse lisse de bonne qualité. La prise en compte des ondes tournante par la JFWI montre un fort intérêt pour la qualité de reconstruction superficielle, comparée à la méthode RWI seule. Cela se traduit ensuite par une reconstruction améliorée en profondeur. Le modèle de vitesse lisse construit par JFWI peut ensuite être considéré comme modèle initial pour la FWI classique, afin d'injecter le contenu en haut nombres d'onde tout en évitant le problème de saut de phase.Les avantages et limites de l'approche de JFWI sont ensuite étudiés dans une application sur données réelles, venant d'un profil 2D de données de fond de mer (OBC) recoupant un nuage de gaz au dessus d'un réservoir. Plusieurs modèles initiaux et stratégies d'inversion sont testés afin de minimiser le problème de saut de phase, tout en construisant des modèles de sous-sol avec une résolution suffisante. Sous réserve de mettre en œuvre des stratégies limitant le problème de saut de phase, la JFWI montre qu'elle peut produire un modèle de vitesse acceptable, injectant les bas nombres d'onde dans le modèle de vitesse. L'amélioration de l'éclairage en angles de diffraction fournie par des acquisitions 3D devrait permettre de pouvoir commencer l'inversion par JFWI à partir de modèle encore moins bien définis. / Full waveform inversion (FWI) has attracted worldwide interest for its capacity to estimate the physical properties of the subsurface in details. It is often formulated as a least-squares data-fitting procedure and routinely solved by linearized optimization methods. However, FWI is well known to suffer from cycle skipping problem making the final estimations strongly depend on the user-defined initial models. Reflection waveform inversion (RWI) is recently proposed to mitigate such cycle skipping problem by assuming a scale separation between the background velocity and high-wavenumber reflectivity. It explicitly considers reflected waves such that large-wavelength variations of deep zones can be extracted at the early stage of inversion. Yet, the large-wavelength information of the near surface carried by transmitted waves is neglected.In this thesis, the sensitivity of FWI and RWI to subsurface wavenumbers is revisited in the frame of diffraction tomography and orthogonal decompositions. Based on this analysis, I propose a new method, namely joint full waveform inversion (JFWI), which combines the transmission-oriented FWI and RWI in a unified formulation for a joint sensitivity to low wavenumbers from wide-angle arrivals and short-spread reflections. High-wavenumber components are naturally attenuated during the computation of model updates. To meet the scale separation assumption, I also use a subsurface parameterization based on compressional velocity and acoustic impedance. The temporal complexity of this approach is twice of FWI and the memory requirement is the same.An integrated workflow is then proposed to build the subsurface velocity and impedance models in an alternate way by JFWI and waveform inversion of the reflection data, respectively. In the synthetic example, JFWI is applied to a streamer seismic data set computed in the synthetic Valhall model, the large-wavelength characteristics of which are missing in the initial 1D model. While FWI converges to a local minimum, JFWI succeeds in building a reliable velocity macromodel. Compared with RWI, the involvement of diving waves in JFWI improves the reconstruction of shallow velocities, which translates into an improved imaging at greater depths. The smooth velocity model built by JFWI can be subsequently taken as the initial model for conventional FWI to inject high-wavenumber content without obvious cycle skipping problems.The main promises and limitations of the approach are also reviewed in the real-data application on the 2D OBC profile cross-cutting gas cloud.Several initial models and offset-driven strategies are tested with the aim to manage cycle skipping while building subsurface models with sufficient resolution. JFWI can produce an acceptable velocity model provided that the cycle skipping problem is mitigated and sufficient low-wavenumber content is recovered at the early stage of inversion. Improved scattering-angle illumination provided by 3D acquisitions would allow me to start from cruder initial models.

Page generated in 0.0413 seconds