• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 257
  • 55
  • 43
  • 30
  • 11
  • 7
  • 7
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 500
  • 500
  • 250
  • 146
  • 126
  • 119
  • 96
  • 79
  • 62
  • 58
  • 56
  • 53
  • 51
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

SHAPE MEMORY BEHAVIOR OF SINGLE CRYSTAL AND POLYCRYSTALLINE Ni-RICH NiTiHf HIGH TEMPERATURE SHAPE MEMORY ALLOYS

Saghaian, Sayed M. 01 January 2015 (has links)
NiTiHf shape memory alloys have been receiving considerable attention for high temperature and high strength applications since they could have transformation temperatures above 100 °C, shape memory effect under high stress (above 500 MPa) and superelasticity at high temperatures. Moreover, their shape memory properties can be tailored by microstructural engineering. However, NiTiHf alloys have some drawbacks such as low ductility and high work hardening in stress induced martensite transformation region. In order to overcome these limitations, studies have been focused on microstructural engineering by aging, alloying and processing. Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at. %)) were systematically characterized in the furnace cooled condition. H-phase precipitates were formed during furnace cooling in compositions with greater than 50.3Ni and the driving force for nucleation increased with Ni content. Alloy strength increased while recoverable strain decreased with increasing Ni content due to changes in precipitate characteristics. The effects of the heat treatments on the transformation characteristics and microstructure of the Ni-rich NiTiHf shape memory alloys have been investigated. Transformation temperatures are found to be highly annealing temperature dependent. Generation of nanosize precipitates (~20 nm in size) after three hours aging at 450 °C and 550 °C improved the strength of the material, resulting in a near perfect dimensional stability under high stress levels (> 1500 MPa) with a work output of 20–30 J cm– 3. Superelastic behavior with 4% recoverable strain was demonstrated at low and high temperatures where stress could reach to a maximum value of more than 2 GPa after three hours aging at 450 and 550 °C for alloys with Ni great than 50.3 at. %. Shape memory properties of polycrystalline Ni50.3Ti29.7Hf20 alloys were studied via thermal cycling under stress and isothermal stress cycling experiments in tension. Recoverable strain of ~5% was observed for the as-extruded samples while it was decreased to ~4% after aging due to the formation of precipitates. The aged alloys demonstrated near perfect shape memory effect under high tensile stress level of 700 MPa and perfect superelasticity at high temperatures up to 230 °C. Finally, the tensioncompression asymmetry observed in NiTiHf where recoverable tensile strain was higher than compressive strain. The shape memory properties of solutionized and aged Ni-rich Ni50.3Ti29.7Hf20 single crystals were investigated along the [001], [011], and [111] orientations in compression. [001]-oriented single crystals showed high dimensional stability under stress levels as high as 1500 MPa in both the solutionized and aged conditions, but with transformation strains of less than 2%. Perfect superelasticity with recoverable strain of more than 4% was observed for solutionized and 550 °C-3h aged single crystals along the [011] and [111] orientations, and general superelastic behavior was observed over a wide temperature range. The calculated transformation strains were higher than the experimentally observed strains since the calculated strains could not capture the formation of martensite plates with (001) compound twins.
152

Atmeniųjų lydinių panaudojimo galimybių robototechniniuose manipuliatoriuose tyrimas / Research of memory alloys application possibilities in robotic manipulators

Melys, Edvardas 26 July 2012 (has links)
Šiame baigiamajame magistro darbe apžvelgti atmenieji lydiniai, pagrindinės jų savybės bei panaudojimo pavyzdžiai, atlikta literatūros nagrinėjama tematika apžvalga, pagrindiniai šių medžiagų panaudojimo privalumai ir trūkumai. Atlikus literatūrinos apžvalgą, remiantis teoriniais duomenimis ir charakteristikomis, suplanuotas ir atliktas eksperimentas — siekiant geriau išsiaiškinti pagrindines šių lydinių savybes bei charakteristikas, kurios reikalingos norint šias medžiagas panaudoti robotiškos srityje - robotų vykdikliams. Eksperimentiškai gauti duomenys pateikiami grafikų pavidalu, iš kurių nustatytos pagrindinės charakteristikos, kurios reikalingos norint sėkmingai šias medžiagas panaudoti projektuojant įvairius mechanizmus ir pavaras su šio lydinio vykdikliais. Eksperimento metu gauti duomenys panaudojami sudarant sistemos dinaminį modelį, kuris sumodeliuojamas skaitmeniniu būdu. Gaunamas sistemos atsakas, kuris patvirtina eksperimento metu gautus duomenis ir suteikia galimybę tolesnius eksperimento plėtojimo planus ir tyrimus vykdyti skaitmeniniais metodais. / This final master thesis contains an overview of shape memory alloys, their literature review, main characteristics, common sage examples as well as their advantages and disadvantages. After analyzing the literature review the experiment has been planed and made in purpose of researching the most basic characteristics of shape memory alloys. The experiment was made with a shape memory alloy spring. The main purpose of the research is to get the most of the characteristics that are mostly needed for the successful usage in the robotic actuators. The data that was taken from the experiment in included in this paper. Acording to this data the conclusions has been made. Based on the experiment data and theoretical data the system’s dynamic model has been made to confirm the results that were taken from the experiment. This thesis allows to use the data taken from the experiment to be used in digital modeling, so further experimenting and system’s designing can be done using digital methods.
153

Stucture and thermomechanical behavior of nitipt shape memory alloy wires

Lin, Brian E. 10 April 2009 (has links)
The objective of this work is to understand the structure-property relationships in a pseudoelastic composition of polycrystalline NiTiPt (Ti-42.7 at% Ni-7.5 at% Pt). Structural characterization of the alloy includes grain size determination and texture analysis while the thermo-mechanical properties are explored using tensile testing. Variation in heat treatment is used as a vehicle to modify microstructure. The results are compared to experiments on Ni-rich NiTi alloy wires (Ti-51.0 at% Ni), which are in commercial use in various biomedical applications. With regards to microstructure, both alloys exhibit a <111> fiber texture along the wire drawing axis, however the NiTiPt alloy's grain size is smaller than that of the Ni-rich NiTi wires, while the latter materials contain second phase precipitates. Given the nanometer scale grain size in NiTiPt and the dispersed, nanometer scale precipitate size in NiTi, the overall strength and ductility of the alloys are essentially identical when given appropriate heat treatments. Property differences include a much smaller stress hysteresis and smaller temperature dependence of the transformation stress for NiTiPt alloys compared to NiTi alloys. Potential benefits and implications for use in vascular stent applications are discussed.
154

Modeling of High Strain Rate Compression of Austenitic Shape Memory Alloys

Yu, Hao 12 1900 (has links)
Shape memory alloys (SMAs) exhibit the ability to absorb large dynamic loads and, therefore, are excellent candidates for structural components where impact loading is expected. Compared to the large amount of research on the shape memory effect and/or pseudoelasticity of polycrystalline SMAs under quasi-static loading conditions, studies on dynamic loading are limited. Experimental research shows an apparent difference between the quasi-static and high strain rate deformation of SMAs. Research reveals that the martensitic phase transformation is strain rate sensitive. The mechanism for the martensitic phase transformation in SMAs during high strain rate deformation is still unclear. Many of the existing high strain rate models assume that the latent heat generated during deformation contributes to the change in the stress-strain behavior during dynamic loading, which is insufficient to explain the large stress observed during phase transformation under high strain rate deformation. Meanwhile, the relationship between the phase front velocity and strain rate has been studied. In this dissertation, a new resistance to phase transformation during high strain rate deformation is discussed and the relationship between the driving force for phase transformation and phase front velocity is established. With consideration of the newly defined resistance to phase transformation, a new model for phase transformation of SMAs during high strain rate deformation is presented and validated based on experimental results from an austenitic NiTi SMA. Stress, strain, and martensitic volume fraction distribution during high strain rate deformation are simulated using finite element analysis software ABAQUS/standard. For the first time, this dissertation presents a theoretical study of the microscopic band structure during high strain rate compressive deformation. The microscopic transformation band is generated by the phase front and leads to minor fluctuations in sample deformation. The strain rate effect on phase transformation is studied using the model. Both the starting stress for transformation and the slope of the stress-strain curve during phase transformation increase with increasing strain rate.
155

Synchrotron Radiation X-Ray Diffraction of Nickel-Titanium Shape Memory Alloy Wires During Mechanical Deformation

Zhang, Baozhuo 12 1900 (has links)
Shape memory alloys (SMAs) are a new generation material which exhibits unique nonlinear deformations due to a phase transformation which allows it to return to its original shape after removal of stress or a change in temperature. It shows a shape memory effect (martensitic condition) and pseudoelasticity (austenitic condition) properties depends on various heat treatment conditions. The reason for these properties depends on phase transformation through temperature changes or applied stress. Many technological applications of austenite SMAs involve cyclical mechanical loading and unloading in order to take advantage of pseudoelasticity, but are limited due to poor fatigue life. In this thesis, I investigated two important mechanical feature to fatigue behavior in pseudoelastic NiTi SMA wires using high energy synchrotron radiation X-ray diffraction (SR-XRD). The first of these involved simple bending and the second of these involved relaxation during compression loading. Differential scanning calorimetry (DSC) was performed to identify the phase transformation temperatures. Scanning electron microscopy (SEM) images were collected for the initial condition of the NiTi SMA wires and during simple bending, SEM revealed that micro-cracks in compression regions of the wire propagate with increasing bend angle, while tensile regions tend to not exhibit crack propagation. SR-XRD patterns were analyzed to study the phase transformation and investigate micromechanical properties. By observing the various diffraction peaks such as the austenite (200) and the martensite (100), (110), and (101) planes, intensities and residual strain values exhibit strong anisotropy depending upon whether the sample is in compression or tension during simple bending. This research provides insight into two specific mechanical features in pseudoelastic NiTi SMA wires.
156

Selektives Laserschmelzen von Kupfer-Basis-Formgedächtnislegierungen

Gustmann, Tobias 03 December 2018 (has links)
Kupferbasierte Legierungen mit Formgedächtniseffekt (z.B. Cu-Al-Ni-Mn) sind vergleichsweise kostengünstige Vertreter im Bereich der Hochtemperatur-Formgedächtnislegierungen mit vielversprechenden Umwandlungseigenschaften. Üblicherweise werden diese über konventionelle schmelzmetallurgische Prozesse hergestellt und dann einer thermomechanischen Behandlung unterzogen. Für die vorliegende Arbeit wurden die Formgedächtnislegierungen Cu-11.85Al-3.2Ni-3Mn und Cu-11,35Al-3,2Ni-3Mn-0,5Zr (m-%) unter Nutzung des selektiven Laserschmelzens (Selective Laser Melting – SLM) verarbeitet und Bauteile, nach einer Optimierung der Prozessparameter, mit einer hohen relativen Dichte (ca. 99%) hergestellt. Anschließend wurde der Einfluss des Energieeintrags, eines zusätzlichen Umschmelzschrittes (Mehrfachbelichtung) und einer Substratheizung auf das Gefüge, das Umwandlungsverhalten, die mechanischen Eigenschaften und die Rückverformung (Zweiweg-Effekt, Pseudoelastizität) untersucht. Zum Vergleich wurden weitere Probenkörper mittels Rascherstarrung der Schmelze hergestellt. Besonders die Korngröße und die thermische Stabilisierung der unterschiedlichen Phasen wirken sich unmittelbar auf die Umwandlungstemperaturen sowie das Rückverformungsverhalten aus. Durch die Nutzung des selektiven Laserschmelzens ergeben sich neue Möglichkeiten bei der Herstellung von endkonturnahen sowie geometrisch komplexen Bauteilen mit Formgedächtniseffekt. Zudem können die Gefüge, und damit die Umwandlungseigenschaften des Materials, bereits während der Herstellung eingestellt werden.
157

Design, Fabrication And Testing Of A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

Krishnan, Vinu Bala 01 January 2004 (has links)
Shape memory alloys (SMAs) can recover large strains (e.g., up to 8%) by undergoing a temperature-induced phase transformation. This strain recovery can occur against large forces, resulting in their use as actuators. The SMA elements in such actuators integrate both sensory and actuation functions. This is possible because SMAs can inherently sense a change in temperature and actuate by undergoing a shape change, associated with the temperature-induced phase transformation. The objective of this work is to develop an SMA based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulk head arrangement for NASA. The design of the thermal conduction switch is based on a biased, two-way SMA actuator and utilizes a commercially available NiTi alloy as the SMA element to demonstrate the feasibility of this concept. This work describes the design from concept to implementation, addressing methodologies and issues encountered, including: a finite element based thermal analysis, various thermo-mechanical processes carried out on the NiTi SMA elements, and fabrication and testing of a prototype switch. Furthermore, recommendations for improvements and extension to NASA's requirements are presented. Such a switch has potential application in variable thermal sinks to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. The SMA thermal conduction switch offers the following advantages over the currently used gas gap and liquid gap thermal switches in the cryogenic range: (i) integrates both sensor and actuator elements thereby reducing the overall complexity, (ii) exhibits superior thermal isolation in the open state, and (iii) possesses high heat transfer ratios between the open and closed states. This work was supported by a grant from NASA Kennedy Space Center (NAG10-323) with William U. Notardonato as Technical Officer.
158

Advanced Development of a Smart Material Design, Modeling, and Selection Tool with an Emphasis on Liquid Crystal Elastomers

Park, Jung-Kyu 20 December 2012 (has links)
No description available.
159

Prestressing concrete beams using shape memory alloy tendons

Ortega, Rosales Juan 01 April 2003 (has links)
No description available.
160

Thermomechanical behaviors of active network polymers

Yu, Kai 21 September 2015 (has links)
This dissertation work focuses on the thermomechanical behaviors of two recent exciting developments in active polymers: shape memory (SM) effects and covalent adaptive network polymers with bond exchange reactions. Both polymers are active in performing prescribed functions when an external stimulus is applied. The goals of the studies are to understand complex thermomechanical behaviors of such smart polymers through experiments, develop constitutive models to describe the behaviors, and use the developed models to assist their development and engineering applications. For the polymer SM effect, we use a multi-branched constitutive model to study the SM effect achieved by polymer glass transition. The major finding of our study is that the “Reduced Time” is identified to be the unique parameter to determine the polymer shape fixity and recovery ratio under different thermo-temporal conditions in an SM cycle. Based on the theoretical knowledge, we also study the energy releasing mechanism within shape memory polymers (SMPs), multi-shape memory effects, as well as the SM properties in various composite systems, such as magnetic particles, carbon black and microvascular reinforced SMP composites. For the covalent adaptive network polymers, we adopt the emerging covalent chemistry BERs to achieve a malleable, reparable, recyclable and yet insoluble thermoset network. After being pulverized into micro-size, and then compressed either at high temperature or just facilitated by the moisture, the polymer powder could be welded on the interfaces, and assembled together into a new sample with comparable mechanical properties to the fresh sample. Theoretical models are developed to gain fundamental understanding of how the processing conditions can affect the quality of reprocessed materials. A molecular model is developed to understand welding kinetics at the interface. Such understanding is then used to develop a multiple length scale interfacial constitutive model, which can be implemented in to finite element simulation software to assist computational study of reprocessing process.

Page generated in 0.0738 seconds