• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 257
  • 55
  • 43
  • 30
  • 11
  • 7
  • 7
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 500
  • 500
  • 250
  • 146
  • 126
  • 119
  • 96
  • 79
  • 62
  • 58
  • 56
  • 53
  • 51
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

An Investigation of the Structural and Magnetic Transitions in Ni-Fe-Ga Ferromagnetic Shape Memory Alloys

Heil, Todd M. 06 January 2006 (has links)
The martensite and magnetic transformations in Ni-Fe-Ga ferromagnetic shape memory alloys are very sensitive to both alloy chemistry and thermal history. A series of Ni-Fe-Ga alloys near the prototype Heusler composition (X2YZ) were fabricated and homogenized at 1423 °K, and a Ni₅₃Fe₁₉Ga₂₈ alloy was subsequently annealed at various temperatures below and above the B2/L21 ordering temperature. Calorimetry and magnetometry were employed to measure the martensite transformation temperatures and Curie temperatures. Compositional variations of only a few atomic percent result in martensite start temperatures and Curie temperatures that differ by about 230 °K degrees and 35 °K degrees, respectively. Various one-hour anneals of the Ni₅₃Fe₁₉Ga₂₈ alloy shift the martensite start temperature and the Curie temperature by almost 70 °K degrees. Transmission electron microscopy investigations were conducted on the annealed Ni₅₃Fe₁₉Ga₂₈ alloy. The considerable variations in the martensite and magnetic transformations in these alloys are discussed in terms of microstructural differences resulting from alloy chemistry and heat treatments. The phase-field method has been successfully employed during the past ten years to simulate a wide variety of microstructural evolution in materials. Phase-field computational models describe the microstructure of a material by using a set of field variables whose evolution is governed by thermodynamic functionals and kinetic continuum equations. A two dimensional phase-field model that demonstrates the ferromagnetic shape memory effect in Ni2MnGa is presented. Free energy functionals are based on the phase-field microelasticity and micromagnetic theories; they account for energy contributions from martensite variant boundaries, elastic strain, applied stress, magnetocrystalline anisotropy, magnetic domain walls, magnetostatic potential, and applied magnetic fields. The time-dependent Ginzburg-Landau and Landau-Lifshitz kinetic continuum equations are employed to track the microstructural and magnetic responses in ferromagnetic shape memory alloys to applied stress and magnetic fields. The model results show expected microstructural responses to these applied fields and could be potentially utilized to generate quantitative predictions of the ferromagnetic shape memory effect in these alloys. / Ph. D.
142

Studies On Nickel-Titanium Shape Memory Alloy Thin Films For Micro-actuator Applications

Sharma, Sudhir Kumar 12 1900 (has links) (PDF)
Shape memory alloys (SMAs) have been recognized as one of the most promising materials for MEMS micro-actuator applications. Among the available materials, Nickel/Titanium (NiTi) SMAs are more popular because, they exhibit unique properties in shape memory effect (SME) and pseudo-elasticity (PE). In addition NiTi SMA possesses high corrosion resistance, excellent mechanical properties and is also bio¬compatible. NiTi thin-film SMAs have been considered as the most significant material in the field of MEMS applications, which can be patterned with standard lithographic techniques to scale-up for batch production. However, the lack of proper understanding of basic materials’ properties and inability to reproduce, has limited the usage of this material in MEMS devices. The properties of NiTi SMA thin-films are very much sensitive to the elemental composition and structure, which are in turn decided by the deposition process and process parameters. A brief history of NiTi shape memory alloys (SMAs), basic information, transformation characteristics, crystal structure, phase diagram and literature reviewed for the current motivation have been presented in the second chapter In the third chapter, a brief summary about the deposition techniques relevant to NiTi film deposition has been presented. The deposition of NiTi films by a number of deposition techniques such as thermal evaporation, co-evaporation, molecular beam Epitaxy, pulsed laser deposition, flash evaporation, electron beam deposition, filtered arc deposition, ion beam assisted sputter deposition, vacuum plasma spraying, ion beam sputtering, ECR sputtering and magnetron sputtering techniques have been discussed. In order to achieve a precise control over film thickness and composition of the films on to the substrates, the selection of magnetron sputtering has been highlighted. In the present thesis, two prolonged approaches such as DC magnetron sputtering of an alloy target and co-sputtering of elemental targets have been presented. Various characterization techniques used for film thickness, composition, structure, micro¬structure, electrical, phase transformation and mechanical properties have also been briefly presented in the same chapter. In the fourth chapter, description of Conventional Alloy Target Sputtering System has been presented. DC magnetron sputtering of an alloy target with two different atomic ratios (Ni:Ti = 45:55 & 50:50) has been used for depositing the coatings. Several limitations in the reproducibility and repeatability have been observed with single alloy target sputtering, irrespective of the target composition ratio. In addition to this, incorporation of oxygen in the films during and after deposition has been observed, which has limited the extensive usage of this single alloy target system. The limitations regarding control over composition, thickness uniformity over large area have been improved by designing and fabricating a dedicated Three Target Magnetron Co-sputtering System. The vacuum diagnosis of the system under different conditions has been carried out by using PPR-200 Residual Gas Analyzer (RGA), which have included in Appendix I. Similar to alloy target sputtering system, the thickness uniformity and required composition with deposition parameters over a size of 75 mm diameter has been achieved and the process repeatability has been established. Oxygen incorporation in the films during deposition has been minimized by pre-sputtering of Ti target for known duration of time, which has resulted in significant reduction in partial pressure of oxygen in the chamber. The oxide layer formation on film surface has been eliminated by in-situ capping layer (TiN) deposition. In the fifth chapter, the influence of process parameters such as sample locations, substrate to target distance (STD), working pressure (WP), gas flow rates, deposition rates, deposition and annealing temperature, Target power, on the film thickness and composition uniformity have been presented for alloy target sputtering system as well as for the co-sputtering system. The film thicknesses have been measured with stylus method. Film compositions have been determined by energy dispersive X-ray spectroscopy (EDS), Secondary ion mass spectrometry (SIMS), Rutherford backscattering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS). The working pressure of 1.5 X 10-3 mbar, STD of 90 mm and target power of 100 W have been found to produce coatings having uniform thickness and composition over the given area for alloy target sputtering system. Similar investigations have been carried out for co-sputtered NiTiCu films. The working pressure of 1.5x 10-3 mbar, at a STD of 90 mm, at a rotational speed of 15 rpm and at target powers of 600, 50 and 12 W for Ti, Ni and Cu respectively, have resulted in the thickness and required composition uniformity over a size of 75 mm diameter substrate and the process repeatability has been established. In the Sixth chapter, the influence of process parameters on film structure and micro-structure on the NiTi/NiTiCu films deposited by a single alloy target and co¬sputtering have been studied by different analytical techniques like XRD, TEM, AFM, SEM etc. Phase transformation temperatures and kind of transformations have been investigated by DSC, Resistivity / Temperature and Stress/ Temperature studies and correlations have been established. The process parameters have been optimized for TiN deposition, which act as the capping layer to protect NiTi films from surface oxidation. The variation in mechanical behavior for the NiTi/ NiTiCu films before and after TiN capping by nano-indentation test have also presented. XRD and TEM studies have shown that the NiTi / NiTiCu films deposited at room temperature to 400o C are amorphous. Post-annealing, at a temperature of 450O C or above resulted in the film crystallization with oxide layer formation at the film surface, which has been confirmed by XRD and XTEM studies. In the case of Ni-rich NiTi films, R-phase diffraction peaks have also been identified in addition to the Austenite / Martensite phase. XRD investigations have shown that Ti-rich NiTi and Ni-rich NiTi films have resulted in precipitate free films. In the case of Ti-rich NiTiCu and Ni-rich NiTiCu films, the variations in Ti/Ni target power has resulted in the formation of NiTi 2 and Ni3Ti precipitates along with their parent Martensite and Austenite phases. When the Cu content is increased in NiTiCu films, an increase in number of Martensite phase diffraction peaks in XRD spectrum has been observed. XTEM studies have confirmed formation of oxide layer, inter-metallic layer and interface layer at higher post annealing temperatures. SEM studies have shown that the films deposited at higher gas flow rate results in the columnar micro-structure. In the context of NiTiCu films, the films deposited at higher Ti target power have shown more compact and tightly packed film micro-structure. AFM studies have shown increase in the average crystallite size and film roughness with post annealing temperature and duration. TiN coating has been used as the capping layer onto NiTi / NiTiCu films. Structural and micro-structural comparison of these films before and after TiN coating has resulted the appearance of (111) TiN peak in all TiN capped films. SEM and AFM studies have shown that the film roughness have decreased after capping layer deposition. DSC thermal cycling used to verify the film crystallization temperature has shown the appearance of exothermic peak in NiTi / NiTiCu films. DSC, Resistivity-temperature, stress-temperature response has been confirmed the transformation temperature and kind of transformations in all the films. Residual stress measurements have shown that the crystalline films exhibited lower bi-axial stress in comparison to the amorphous films. Ti-rich NiTi films have shown single phase transformations (M-A and A-M) whereas two phase transformations (M-R-A and A-R-M) have been observed in Ni-rich NiTi films. Higher deposition / annealing temperature have shown the appearance of distinct phase transformation peaks in resistivity vs. temperature studies. In the case of NiTiCu films, the decrease in film crystallization temperature with increase in the Cu content has been observed. The phase transformation temperature evaluated from second thermal cycle has shown decrease in the width of hysteresis loop with increase in the Cu content in NTC films. Nano-indentation studies have been carried out to evaluate the micro-hardness and modulus values of TiN capped and uncapped NiTi / NiTiCu films. The modulus and hardness uniformity have been confirmed for the different location over a diameter of 75 mm. The modulus and hardness values have increased with increase in the substrate and annealing temperature. Increase in the Cu target power has resulted in the increase in the hardness and modulus values under same deposition conditions. TiN coated NiTi / NiTiCu films have shown larger modulus and hardness values than the uncapped films. In the Seventh chapter, the fabrication process and actuation response for silicon dioxide, Aluminum and NiTi SMA coated micro-cantilevers has been discussed. Various nano-structures such as pyramids, beams and pillars by focused ion beam (FIB) micro-machining have been fabricated. High aspect ratio nano-pillars have been selected for micro-compression testing. In summary, this thesis emphasizes on the fabrication of specific sputtering systems relevant to NiTi film deposition and process parameter optimization for desired film thickness and composition uniformity. DC magnetron sputtering of a NiTi alloy target (50:50 and 45:55 at. %) and co-sputtering of elemental targets (Ni, Ti and Cu) have been presented. These films have been investigated for structural, micro-structural, phase transformation and mechanical properties. In-situ deposition of TiN capping layer, on to NiTi / NiTiCu films has been carried out to reduce the oxygen trapping. The fabrication process and actuation response of micro-cantilevers have been described. The etching characteristics to generate various nano-structures viz. pyramids, beams and pillars by focused ion beam (FIB) micro-machining have been investigated and mechanical testing of selected nano-structures have also been reported.
143

Seismic Response and Analysis of Multiple Frame Bridges Using Superelastic Shape Memory Alloys

Andrawes, Bassem Onsi 14 April 2005 (has links)
The feasibility of using superelastic shape memory alloys in the retrofit of multiple frame bridges is investigated. First, three shape memory alloy constitutive models with various levels of complexity are compared in order to determine the significance of including subloops and cyclic loading effects on the structural response. The results show that the structural response is more sensitive to the shape memory alloys strength degradation and residual deformation than the sublooping behavior. Next, two parametric studies are conducted to explore the sensitivity of hinge opening to the mechanical behavior of the superelastic shape memory alloys. The first study is focused on the hysteretic properties of the alloy that could vary depending on the chemical composition or the manufacturing process of the alloy, while the second study targets the changes in the mechanical behavior of shape memory alloys resulting from the variability in the ambient temperature. The results show that the hysteretic behavior of shape memory alloys has only a slight effect on the bridge hinge opening as long as the recentering property is maintained. A detailed study on the effect of temperature shows that a reduction in the ambient temperature tends to negatively affect the hinge opening while an increase in temperature results in a slight improvement. Next, a parametric study is conducted to examine the effectiveness of shape memory alloy retrofit devices in limiting hinge openings in bridges with various properties. In addition, a comparison is made with other devices such as conventional steel restrainers, metallic dampers, and viscoelastic solid dampers. The results illustrate that superelastic shape memory alloys are superior in their effectiveness compared to other devices in the case of bridges with moderate period ratios and high level of ductility, especially when subjected to strong earthquakes.
144

Fabrication and characterization of shape memory polymers at small scales

Wornyo, Edem 17 November 2008 (has links)
The objective of this research is to thoroughly investigate the shape memory effect in polymers, characterize, and optimize these polymers for applications in information storage systems. Previous research effort in this field concentrated on shape memory metals for biomedical applications such as stents. Minimal work has been done on shape memory poly- mers; and the available work on shape memory polymers has not characterized the behaviors of this category of polymers fully. Copolymer shape memory materials based on diethylene glycol dimethacrylate (DEGDMA) crosslinker, and tert butyl acrylate (tBA) monomer are designed. The design encompasses a careful control of the backbone chemistry of the materials. Characterization methods such as dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC); and novel nanoscale techniques such as atomic force microscopy (AFM), and nanoindentation are applied to this system of materials. Designed experiments are conducted on the materials to optimize spin coating conditions for thin films. Furthermore, the recovery, a key for the use of these polymeric materials for information storage, is examined in detail with respect to temperature. In sum, the overarching objectives of the proposed research are to: (i) design shape memory polymers based on polyethylene glycol dimethacrylate (PEGDMA) and diethylene glycol dimethacrylate (DEGDMA) crosslinkers, 2-hydroxyethyl methacrylate (HEMA) and tert-butyl acrylate monomer (tBA). (ii) utilize dynamic mechanical analysis (DMA) to comprehend the thermomechanical properties of shape memory polymers based on DEGDMA and tBA. (iii) utilize nanoindentation and atomic force microscopy (AFM) to understand the nanoscale behavior of these SMPs, and explore the strain storage and recovery of the polymers from a deformed state. (iv) study spin coating conditions on thin film quality with designed experiments. (iv) apply neural networks and genetic algorithms to optimize these systems.
145

Etude de l'influence du vieillissement en phase B sur la dégradation de l'effet mémoire de forme dans les alliages Cu-Al-Ni / Study of the influence of ageing in B-phase on degradation of shape memory effect in Cu-Al-Ni alloys

Binene Musasa, François 14 September 2010 (has links)
Les alliages Cu-Al-Ni sont les seuls à posséder une température de transformation allant jusque 200°C. Ceci leur confère un avantage par rapport aux alliages Cu-Al-Zn ou Ti-Ni dont les températures de transformation ne dépassent pas 100°C.<p><p>Néanmoins, un chauffage temporaire au dessus de 200°C peut provoquer une perte de l’effet mémoire des alliages Cu-Al-Ni.<p><p>Nous avons étudié trois alliages aves des teneurs en nickel comprises entre 3 % et 5 %.<p><p>L’objectif de notre étude est double :<p><p>• Étudier la cinétique des transformations structurales au cours d’un vieillissement en phase β dans le domaine de températures 200°C-350°C ;<p><p>• Quantifier la perte de l’effet mémoire au cours du vieillissement afin de déterminer les possibilités d’utilisation de ces alliages au dessus de 200°C.<p><p>La caractérisation structurale a été effectuée par microscope optique, diffraction des rayons X, microscopie électronique à balayage et microscopie électronique en transmission. <p><p>Les caractéristiques de la transformation martensitique ont été déterminées par analyse thermomécanique (TMA), par calorimétrie différentielle à balayage (DSC) et par des mesures de résistivité électrique. <p><p>La perte de l’effet mémoire simple sens a été quantifiée à partir des courbes de transformations obtenues par analyse thermomécanique(TMA) sur des échantillons comprimés.<p><p>Les résultats principaux sont :<p><p>&61636; Au dessus de 300°C, la précipitation de la phase d’équilibre у&8322; se produit au cours du vieillissement. Elle entraîne une augmentation de la température Mѕ.<p><p>Nous avons montré que cette augmentation de Ms peut être reliée à la fraction transformée par une loi de puissance.<p><p>&61636; Il n’y a pas de relation directe, en revanche, entre la perte de l’effet mémoire et la fraction transformée. Cela indique que le nombre et la taille des précipités ont une influence sur la perte de l’effet mémoire.<p><p>&61636; Pour un vieillissement de 256 minutes à 275°C, la perte de l’effet mémoire est inférieure à 15%. Par contre, au dessus de 300°C, la perte de l’effet mémoire est très rapide.<p><p>Nous pouvons donc considérer que 275°C est une température limite à ne pas dépasser pour ces alliages.<p><p><p><p><p><p><p>ABSTRACT<p><p>The shape memory alloys Cu-Al-Ni are the only ones to have a transformation temperature of up to 200°C. This gives them an advantage compared to shape memory alloys Cu-Zn-Al or Ti-Ni whose transformation temperatures do not exceed 100 ° C.<p><p>However, a temporary heating above 200 ° C can cause a loss of memory effect alloys Cu-Al-Ni.<p><p>We studied three alloys with nickel content between 3% and 5%.<p><p>The aim of our study is twofold:<p><p>• Studying the kinetics of structural changes during aging in β phase in the temperature range 200 °C-350 °C.<p><p>• Quantifying the loss of memory effect with aging in order to determine the potential use of these alloys above 200°C.<p><p>The structural characterization was carried out by optical microscope, XR-ray diffraction, scanning electron microscopy and transmission electron microscopy.<p><p>The characteristics of the martensitic transformation were determined by thermomechanical analysis (TMA), differential scanning calorimetry (DSC) and by measuring the electrical resistivity.<p><p>The loss of one way shape memory was quantified from the curves obtained by thermomechanical analysis (TMA) on compressed samples.<p><p>The main results are:<p><p>&61636; Above 300 ° C, the precipitation of equilibrium phase γ2 occurs during aging. It causes an increase in temperature Mѕ.<p><p>We showed that this increase of Ms may be related to the fraction transformed by a power law.<p><p>&61636; There is no direct relationship between the loss of memory effect and the fraction transformed. This indicates that the number and size of the precipitates have an influence on the loss of memory effect.<p><p>& / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
146

Composition Analysis Of NiTi Thin Films Sputtered From A Mosaic Target : Synthesis And Simulation

Vincent, Abhilash 11 1900 (has links) (PDF)
No description available.
147

Shape Memory Behavior of Dense and Porous NiTi Alloys Fabricated by Selective Laser Melting

Saedi, Soheil 01 January 2017 (has links)
Selective Laser Melting (SLM) of Additive Manufacturing is an attractive fabrication method that employs CAD data to selectively melt the metal powder layer by layer via a laser beam and produce a 3D part. This method not only opens a new window in overcoming traditional NiTi fabrication problems but also for producing porous or complex shaped structures. The combination of SLM fabrication advantages with the unique properties of NiTi alloys, such as shape memory effect, superelasticity, high ductility, work output, corrosion, biocompatibility, etc. makes SLM NiTi alloys extremely promising for numerous applications. The SLM process parameters such as laser power, scanning speed, spacing, and strategy used during the fabrication are determinant factors in composition, microstructural features and functional properties of the SLM NiTi alloy. Therefore, a comprehensive and systematic study has been conducted over Ni50.8 Ti49.2 (at%) alloy to understand the influence of each parameter individually. It was found that a sharp [001] texture is formed as a result of SLM fabrication which leads to improvements in the superelastic response of the alloy. It was perceived that transformation temperatures, microstructure, hardness, the intensity of formed texture and the correlated thermo-mechanical response are changed substantially with alteration of each parameter. The provided knowledge will allow choosing optimized parameters for tailoring the functional features of SLM fabricated NiTi alloys. Without going through any heat treatments, 5.77% superelasticity with more than 95% recovery ratio was obtained in as-fabricated condition only with the selection of right process parameters. Additionally, thermal treatments can be utilized to form precipitates in Ni-rich SLM NiTi alloys fabricated by low energy density. Precipitation could significantly alter the matrix composition, transformation temperatures and strain, critical stress for transformation, and shape memory response of the alloy. Therefore, a systematic aging study has been performed to reveal the effects of aging time and temperature. It was found that although SLM fabricated samples show lower strength than the initial ingot, heat treatments can be employed to make significant improvements in shape memory response of SLM NiTi. Up to 5.5% superelastic response and perfect shape memory effect at stress levels up to 500 MPa was observed in solutionized Ni-rich SLM NiTi after 18h aging at 350ºC. For practical application, transformation temperatures were even adjusted without solution annealing and superelastic response of 5.5% was achieved at room temperature for 600C-1.5hr aged Ni-rich SLM NiTi. The effect of porosity on strength and cyclic response of porous SLM Ni50.1 Ti49.9 (at%) were investigated for potential bone implant applications. It is shown that mechanical properties of samples such as elastic modulus, yield strength, and ductility of samples are highly porosity level and pore structure dependent. It is shown that it is feasible to decrease Young’s modulus of the SLM NiTi up to 86% by adding porosity to reduce the mismatch with that of a bone and still retain the shape memory response of SLM fabricated NiTi. The shape memory effect, as well as superelastic response of porous SLM Ni50.8Ti49.2,were also investigated at body temperature. 32 and 45% porous samples with similar behaviors, recovered 3.5% of 4% deformation at first cycle. The stabilized superelastic response was obtained after clicking experiments.
148

Création d'états de précontrainte dans des composants en béton par alliages à mémoire de forme : approche expérimentale et modélisation / Creation of prestress states in concrete components with shape memory alloys : experimental approach and modelling

Tran, Hanh 22 October 2012 (has links)
Les Alliages à Mémoire de Forme (AMF) sont des matériaux actifs ayant des propriétés mécaniques spectaculaires comparées aux autres métaux : effets mémoire simple et double sens, pseudo-élasticité et amortissement. Les propriétés des AMF ont pour origine physique une transformation austénite – martensite pilotée par la température et le niveau de contrainte dans le matériau. Les phases austénite (A) et martensite (M) sont présentes respectivement à haute température et à base température. L’effet mémoire, quant à lui, réside dans la capacité du matériau à retrouver la forme austénitique initiale par élévation de température, après avoir été déformé de manière permanente à l’état martensitique à basse température. Le comportement mécanique des structures en béton est gouverné par le processus d’endommagement du matériau. Ce processus peut être retardé en appliquant un chargement uni ou multi-axial de compression, dans le but de contrer les contraintes locales de traction auxquelles le béton est peu résistant. Cette thèse porte sur l’utilisation d’alliages à mémoire de forme (AMF) pour la création d’états de précontrainte dans des composants en béton. Le travail repose sur deux approches : expérimentation et modélisation. Dans la première partie, des essais préliminaires concernent l’étude du comportement thermomécanique de l’AMF en Ni-Ti. Cette réponse complexe est étudiée de manière séparée à l’aide d’une machine de traction – compression uni-axiale couplée à des moyens de chauffage et de refroidissement. Ensuite, des fils d’AMF sont utilisés pour la création de précontraintes dans des poutrelles et de confinements dans des cylindres en béton. Les fils sont étirés à l’état martensitique avant d’être fixés à leurs extrémités sur des éprouvettes en béton. L’activation thermique de l’effet mémoire provoque la mise en contrainte du béton. Et puis, des essais d’écrasement des cylindres sont réalisés pour estimer l’amélioration des performances du béton confiné à l’aide de fils d’AMF. Les résultats montrent que l’effet de confinement permet d’améliorer fortement la performance mécanique en compression du béton. Dans la deuxième partie, un modèle thermomécanique est élaboré pour l’analyse du comportement de fils d’AMF sollicités en traction-compression alternée uni-axiale. Une procédure de calcul numérique pas-à-pas est développé pour la simulation du comportement de fils en AMF pour l’ensemble de la procédure de création d’effet de précontrainte. Cette simulation donne une description fine des mécanismes au sein du fil au cours des essais sur des composants en béton-AMF. L’interaction complexe entre le béton et l’AMF est précisément analysée grâce à l’utilisation du modèle thermomécanique de l’AMF. Enfin, les études de cette thèse confirment une possibilité du champ d’application des AMF dans la thématique du renforcement préventif des structures en béton. / Shape memory alloys (SMAs) are active materials that exhibit special properties such as pseudoelasticity and memory effect. These properties are resulting from austenite vs. martensite reversible transformations governed by temperature and mechanical stress states. The austenite phase (A) and the martensite phase (M) are present respectively at high and low temperature. The shape memory effect is the ability of the material to retain a deformation gained in the martensite phase, i.e. at low temperature, and then to recover its initial shape when it returns to the austenite phase upon temperature increase. The mechanical behaviour of structural concrete is governed by a process of damage. The damaging process can be delayed by applying a uni- or multiaxial compression in order to counterbalance local tensile stresses in the material. The present thesis deals with the use of shape memory alloys (SMAs) to create prestress states in concrete components. The work is based on two approaches: experimental and modelling. In the first part, preliminary tests concern the studies of the thermomechanical behaviour of Ni-Ti SMA. This complex response is studied singly by means of a MTS uniaxial testing machine and heating-cooling systems. Then, SMA wires are used to create prestress states in small-scale concrete beams as well as confinement states in concrete cylinders. They were given a prestrain in a martensitic state before being firmly fixed on concrete components. Thermal activation of the memory effect in the SMA wires caused their tensioning, which resulted in reaction in the creation of stresses in the concrete. Moreover, crush tests of concrete cylinders are performed in order to estimate the improvement of the mechanical performance of concrete confined by means of SMA wires. The test results show that the confinement effect can improve strongly the mechanical performance of concrete. In the second part, a thermomechanical model is performed to analyze the behaviour of SMA with an extension to allow for uniaxial traction-compression. A steps by steps process of the numerical simulation is developed for SMAs during the process of prestress creation. This simulation gives a detailed description of the mechanisms of SMA wires which lead to the process of experimental studies on the SMAs-concrete components. A complex interaction between the concrete and the SMAs is evidenced by means of the thermomechanical model of SMAs. Finally, studies presented in the present thesis confirm the possibility to use SMA as preventive reinforcement for application to civil engineering structures.
149

A Shape Memory Polymer for Intracranial Aneurysms: An Investigation of Mechanical and Radiographic Properties of a Tantalum-Filled Shape Memory Polymer Composite

Heaton, Brian Craig 09 July 2004 (has links)
An intracranial aneurysm can be a serious, life-threatening condition which may go undetected until the aneurysm ruptures causing hemorrhaging within the brain. The typical treatment method for large aneurysms is by embolization using platinum coils. However, in about 15% of the cases treated by platinum coils, the aneurysm eventually re-opens. The solution to the problem of aneurysm recurrence may be to develop more bio-active materials, including certain polymers, to use as coil implants. In this research, a shape memory polymer (SMP) was investigated as a potential candidate for aneurysm coils. The benefit of a shape memory polymer is that a small diameter fiber can be fed through a micro-catheter and then change its shape into a three-dimensional configuration when heated to body temperature. The SMP was tested to determine its thermo-mechanical properties and the strength of the shape recovery force. In addition, composite specimens containing tantalum filler were produced and tested to determine the mechanical effect of adding this radio-opaque metal. Thermo-mechanical testing showed that the material exhibited a shape recovery force a few degrees above Tg. The effects of the metal filler were small and included depression of Tg and recovery force. SMP coils deployed inside a simulated aneurysm model demonstrated that typical hemodynamic forces would not hinder the shape recovery process. The x-ray absorption capability the tantalum-filled material was characterized using x-ray diffractometry and clinical fluoroscopy. Diffractometry revealed that x-ray absorption increased with tantalum concentration, however, not as the rule of mixtures would predict. Fluoroscopic imaging of the composite coils in a clinical setting verified the radio-opacity of the material.
150

Probabilistic Seismic Demand Assessment of Steel Frames with Shape Memory Alloy Connections

Taftali, Berk 09 July 2007 (has links)
Shape Memory Alloys (SMAs) exhibit the ability to undergo large deformations but can recover permanent strains via heating (shape memory effect) or when stress is removed (superelastic effect). This study evaluates the comparative seismic performance of steel moment resisting frames (SMRFs) with innovative beam-to-column connections that use SMA bars as connecting elements. The performance evaluation studies are based on two types of SMA beam-to-column connections: (1) superelastic SMA connections with recentering capability; (2) martensitic SMA connections with high energy dissipation capacity. Fiber models for these SMA connections are implemented in the OpenSees finite element framework, and are verified against data from full-scale experimental tests that were performed on a prototype SMA connection in previous research at Georgia Tech. Three- and a nine-story model buildings with partially-restrained (PR) moment frames are selected from the SAC Phase II Project as case studies. Non-linear time history analyses on these model buildings, with and without SMA connections, are conducted using suites of ground acceleration records from the SAC Phase II project that represent different seismic hazard levels. Several SMA connections are designed for each structure, and their effect on peak and residual inter-story drift angles, connection rotations, and normalized dissipated hysteretic energy demands are investigated to determine the most suitable design. Finally, the seismic demands on the model buildings with conventional PR and selected SMA connections are evaluated in a probabilistic framework. The resulting seismic demand relationships are used to assess the effectiveness of the SMA connections in enhancing the building performance over a range of demand levels. The results of this performance evaluation show that the SMA connections are most effective in controlling structural response under high levels of seismic intensity leading to large deformation demands. In particular, the energy dissipating SMA connections are found to be effective in reducing maximum deformation demands, while the recentering SMA connections are more suitable for controlling residual deformations in the structure.

Page generated in 0.0389 seconds