• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 809
  • 408
  • 186
  • 94
  • 33
  • 19
  • 15
  • 14
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • Tagged with
  • 1857
  • 252
  • 221
  • 211
  • 208
  • 187
  • 187
  • 166
  • 158
  • 132
  • 110
  • 107
  • 101
  • 100
  • 91
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Síntese e caracterização de um sistema multifuncional SBA-16/Nanopartículas magnéticas/gel polimérico para bioaplicações

Raquel Cristina de Souza Azevedo 13 February 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A combinação do material mesoporoso SBA-16 com o gel polimérico poli(N-isopropilacrilamida) contendo nanopartículas magnéticas pode conduzir à formação de um material híbrido interessante para aplicação em magnetohipertemia e liberação controlada de fármacos. Neste trabalho, foi explorada a estratégia de síntese de um sistema multifuncional, constituído por SBA-16/Fe3O4/P(N-iPAAm) com o objetivo de avaliar sua potencialidade de geração de calor a partir da magnetita e sua contribuição nos estudos de liberação controlada de fármacos. A caracterização dos materiais foi feita por Microscopia Eletrônica de Varredura (MEV), Microscopia Eletrônica de Transmissão (MET), Adsorção de Nitrogênio, Espalhamento de Raios X a Baixos Ângulos (SAXS), Análise Termogravimétrica (TG), Análise Elementar (CHN), Espectroscopia na Região do Infravermelho com Transformada de Fourier (FTIR), Difração de Raios X (DRX), Espectroscopia Mössbauer, Medidas Magnéticas e Espectroscopia de Fotoelétrons Excitados por Raios X (XPS). Através da análise dos resultados obtidos foi possível confirmar a formação do híbrido, e elucidar as propriedades físico-químicas, estruturais e magnéticas das amostras. Medidas das propriedades de geração de calor mostraram que o híbrido apresentou uma variação de temperatura (T) de 11 e 35C nas concentrações de 10 e de 20 mg/mL, respectivamente, no campo magnético alternado de 126 Oe; e apresentou uma variação de temperatura (T) de 32 e 39C nas concentrações de 10 e de 20 mg/mL, respectivamente, no campo magnético alternado de 168 Oe. Este resultado demonstrou que este sistema multifuncional apresenta potencial como agente de hipertermia para o tratamento do câncer. Por fim, foi feito o estudo da influência dessas nanopartículas magnéticas com a presença do gel na cinética de liberação do fármaco Doxorrubicina (DOX) sob condições in vitro. A liberação foi estudada na ausência e na presença de um campo magnético alternado de 126 Oe, que se constatou a influência do campo magnético no aumento da taxa de liberação da DOX. Este resultado demonstrou que a propriedade da magnetita de gerar calor aliada às propriedades do P(N-iPAAm) de transição de fases (contração) contribuiu para uma melhor taxa de liberação da DOX. / The combination of SBA-16 mesoporous materials with gel polymer poly (N-isopropylacrylamide) containing magnetic nanoparticles can lead to the formation of an interesting hybrid material for use in hybrid magnetic hyperthermia and controlled drug release. In this study, we explored the strategy of synthesis of a multifunctional system consisting of SBA-16/Fe3O4/P(N-iPAAm) in order to assess its potential for heat generation from magnetite and its contribution in the controlled drug release. The materials were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Nitrogen Adsorption, Small Angle X Ray Scattering (SAXS), Thermogravimetric Analysis (TG), Elemental Analysis (CHN), Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), 57Fe Mössbauer spectroscopy, magnetic measures and X-Ray Photoeletron Spectroscopy (XPS). Through the analysis of the results it was possible to confirm the formation of the hybrid system, and elucidate the physicochemical, structural and magnetic properties of the samples. Measurements of the properties of heat generation showed that the hybrid presents a temperature variation (T) of 11 and 35C in concentrations of 10 and 20 mg/mL, respectively, in the alternating magnetic field of 126 Oe, and presents a temperature variation (T) 32 and 39C at concentrations of 10 and 20 mg/mL, respectively, in alternating magnetic field of 168 Oe. This result indicates that the multifunctional system shows great potential as a hyperthermia agent for cancer treatment. Finally, the study of the influence of these magnetic particles in the kinetics of release of the doxorubicin (DOX) was made in the presence of gel under in vitro conditions. The release was studied in the absence and in the presence of an alternating magnetic field of 126 Oe; it was found that the presence of magnetic field increased the release rate of DOX. This result demonstrated that the property of heat generate from magnetite combined with phase transition (contraction) properties of P(N-iPAAm) contributed to a better control of release of DOX from hybrid system.
332

Nanoparticulas de sílica mesoporosa MCM-41 funcionalizadas com aptâmero e radiomarcadas com 90Y e 159Gd como um potencial agente terapêutico contra câncer colorretal

Carolina de Aguiar Ferreira 14 March 2014 (has links)
O câncer colorretal (CRC) é um tumor maligno que afeta o intestino grosso e o reto, o tipo de câncer mais comum do trato gastrointestinal, o terceiro mais comumente diagnosticado no mundo e a segunda principal causa de morte relacionada ao câncer nos Estados Unidos. Hoje em dia, os procedimentos terapêuticos disponíveis para este tipo de câncer são limitados e ineficazes. A radioterapia convencional não é uma abordagem comumente utilizada no tratamento de CRC, devido ao fato de que os movimentos peristálticos dificultam o direcionamento da radiação ionizante e, assim, este tipo de tratamento é utilizado como adjuvante e paliativo para controlar sintomas. Portanto, a intervenção cirúrgica é a opção terapêutica primária contra esta doença. As pesquisas com base na combinação de radioisótopos e sistemas carreadores nanoestruturados têm demonstrado resultados significativos na melhoria da seletividade de ação, bem como na redução da dose de radiação nos tecidos saudáveis. As nanopartículas de sílica mesoporosa MCM-41 têm características únicas, tais como elevada área superficial e diâmetros de poros bem definidos, fazendo destas nanopartículas um candidato ideal como carreador de agentes terapêuticos. A funcionalização desses carreadores com moléculas específicas tem sido utilizada como uma forma de direcionar essas partículas para as regiões desejadas, aumentando o acúmulo dessas partículas nos tecidos-alvo e diminuindo o efeito adverso em tecidos sadios. Uma molécula específica de destaque é o aptâmero anti-CEA, que é uma porção de cadeia de DNA que tem a capacidade de se ligar e reconhecer receptores de antígeno carcinoembriogênico superexpressos em células de tumor colorretal. Assim, o objetivo deste trabalho consistiu em sintetizar e caracterizar nanopartículas de sílica mesoporosa MCM-41, funcionalizadas com aptâmero anti-CEA e conjugados com ítrio-90 ou gadolínio-159 e avaliar esses sistemas como potenciais agentes terapêuticos. As nanopartículas foram sintetizadas através do método de sol-gel. As amostras foram caracterizadas através das técnicas de espectroscopia na região do infravermelho com transformada de Fourier (FTIR), espalhamento de raios X a baixos ângulos (SAXS), espectroscopia de correlação de fótons (PCS), análise de potencial zeta, análise termogravimétrica (TGA), análise elementar (CHN), adsorção de nitrogênio (BET) e microscopia eletrônica de transmissão (TEM) e de varredura (SEM). A capacidade de incorporar íons Y+3 e Gd+3 foi determinada in vitro, utilizando diferentes proporções (1:1 e 1:3 v/v) de YCL3 e Gd203 e nanopartículas de sílica dispersas em água MilliQ. Os íons não incorporados foram removidos por ultracentrifugação e a concentração de íons no sobrenadante foi determinada por espectrometria de emissão atômica com plasma indutivamente acoplado (ICP-AES). A viabilidade celular foi avaliada por um ensaio MTT colorimétrico no qual foram usadas células específicas de câncer colorretal T84. Os resultados mostraram que as nanopartículas foram sintetizadas com sucesso, obtendo nanopartículas com morfologia esférica, tamanho de partícula de 400 nm, PDI (índice de Polidispersividade) 0,1, potencial zeta de -25,8 meV , arranjo hexagonal de poros com diâmetros de 3 nm e área superficial de 1.400 m2.g-1. Os resultados do ensaio de viabilidade celular sugerem o uso de nanopartículas incorporadas com radioisótopos como potenciais agentes terapêuticos. / Colorectal cancer (CRC) is a malignancy that affects large intestine and rectum, and it is the most common malignancy of the gastrointestinal tract, the third most commonly diagnosed type of cancer in the world and the second leading cause of cancer-related death in the United States. Nowadays, available therapeutic procedures for this type of cancer are limited and ineffective. Conventional radiotherapy is not an often used approach in the treatment of CRC due to the fact that peristaltic movements hamper the targeting of ionizing radiation and this type of treatment is used as adjuvant and palliative to control symptoms. Therefore, surgical intervention is the primary therapeutic choice against this disease. Researches based on the combination of radioisotopes and nanostructured carriers systems have demonstrated significant results in improving the selectivity action as well as reducing the radiation dose into healthy tissues. MCM-41 mesoporous silica nanoparticles have unique characteristics such as high surface area and well-defined pore diameters making these nanoparticles an ideal candidate of therapeutic agent carrier. Thus, the objective of this work is to synthesize and characterize MCM-41 mesoporous silica nanoparticles conjugated with yttrium-90 and gadolinium-159 and evaluate this system as a potential therapeutic agent. The nanoparticles were synthesized via sol-gel method. The sample was characterized using FTIR, SAXS, PCS, Zeta Potential analysis, Thermal analysis, CHN elemental analysis, nitrogen adsorption, scanning and transmission electron microscopy. The ability to incorporate Y+3 and Gd+3 ion was determined in vitro using different ratios (1:1, 1:3, 1:5 v/v) of YCL3 and Gd2O3 and silica nanoparticles dispersed in saline, pH 7.4. The non-incorporated Y+3 and Gd+3 ions were removed by ultracentrifugation procedure and the concentration of ions in the supernatant was determined by ICP-AES. Cell viability was assessed by colorimetric MTT assay in which specific colorectal cancer cells T84 were used. The results showed that the nanoparticles were successfully synthesized, obtaining nanoparticles with spherical morphology, particle size of 400 nm, PDI 0,1, zeta potential of -25, 8 meV, hexagonal arrangement of pores with 3 nm diameters and superficial area of 1400 m2.g-1. Cell viability assay results suggest the use of incorporated nanoparticles as a potential therapeutic agent.
333

Preparação de sílica organofuncionalizada a partir de casca de arroz, com capacidade adsorvente de íons metálicos. / Preparation of organically modified silica from rice husk with capacity to sorption of metallic ions.

Chaves, Márcia Rodrigues de Morais 31 January 2008 (has links)
Esta tese apresenta a obtenção de sílica xerogel a partir de carvão de cascas de arroz e a modificação da sua superfície com um ligante orgânico tipo base de Schiff. O objetivo da utilização deste resíduo agroindustrial é a obtenção de um adsorvente capaz de atuar no tratamento de águas contaminadas contendo íons cádmio II, em uma concepção de valorização de resíduos. A sílica contida na biomassa foi obtida na forma de silicato de sódio através de extração química com solução de hidróxido de sódio, seguida de hidrólise e condensação do monômero através do processo solgel. A modificação da superfície da sílica com o ligante salen foi realizada utilizando o 1,2-dicloroetano como espaçador bifuncional. A sílica xerogel modificada foi avaliada através de análises de isotermas de adsorção e dessorção de nitrogênio (BET/BJH), difração de raios-X (DRX), análise química elementar (CHN), espectroscopia de infravermelho com transformada de Fourier (FTIR), microscopia eletrônica de varredura (MEV) e termogravimetria (TG/DTG). A análise elementar indicou que 0,341 mmol/g de 1,2-dicloroetano e 0,095 mmol/g de salen foi ancorado na superfície da sílica, que apresentou estabilidade térmica até 209°C e área de superfície específica de 106,4 m²/g. Foi realizado um estudo sobre a capacidade de adsorção de íons cádmio (II) pela sílica modificada e não modificada. Os resultados indicam a superior capacidade de adsorção de cádmio pela sílica modificada, em soluções com baixa concentração do íon. / This thesis presents the obtainment of silica xerogel by rice husk charcoal and its surface modification using an organic ligand type Schiff-base. The purpose of this agro-industrial residue utilization is the production of an adsorbent capable to remove heavy metals present in contaminated waters. The silica contained in the biomass was obtained by alkaline extraction in sodium silicate with hydrolysis through sol-gel process, and modified with salen, using 1,2-dichloroethane as bi-functional spacer. The modified xerogel silica was evaluated through analysis of nitrogen adsorption/desorption isotherms (BET/BJH), X-ray diffraction (XRD), chemical elementary analysis (CHN), Fourier transform infrared spectroscopy (FTIR), scanning electronic microscopy (SEM) and thermogravimetric analysis (TG/DTG). The elementary analysis pointed that 0,341mmol/g of the 1,2-dichloroethane and 0,095mmol/g of the salen was anchored to the silica surface, that presented thermal stability until 209°C and specific surface area of 106,4 m²/g. An evaluation about the ion cadmium II adsorption capacity of the silica modified and unmodified was performed. The results pointed to the superior cadmium adsorption capacity for the modified silica if low ion concentration solutions.
334

[en] HYBRID SILICA NANOPARTICLES FOR STABILIZATION OF BIPHASIC DISPERSIONS / [pt] NANOPARTÍCULAS DE SÍLICA HÍBRIDAS PARA ESTABILIZAÇÃO DE DISPERSÕES BIFÁSICAS

LUIS MIGUEL GUTIERREZ BELENO 20 February 2019 (has links)
[pt] As dispersões bifásicas (ex. espumas e emulsões), de grande relevância prática na química e na engenharia, são termodinamicamente instáveis devido à diminuição de energia livre no processo de coalescência. Esta limitação é comumente minimizada através de mecanismos de estabilização eletrostática e estérica. Recentemente, há um interesse crescente na estabilização de emulsões e espumas usando partículas sólidas (tipo Pickering), devido à forte adsorção das mesmas nas interfaces para formar uma película sólida. Dependendo do tamanho e do ângulo de contato, a adsorção das partículas pode tornar-se irreversível, melhorando a estabilidade em comparação com sistemas estabilizados por surfactante. Como nanopartículas de molhabilidade intermédia são relativamente raras, o ajuste deste parâmetro é o principal desafio para obter dispersões estáveis. No presente estudo, nanopartículas de sílica (SiNPs) foram modificadas superficialmente com 3-aminopropil trimetoxisilano e hexadeciltrimetoxisilano como agentes sililantes, para se obter três tipos diferentes de nanopartículas híbridas de maior hidrofobicidade, visando a formulação de dispersões bifásicas altamente estáveis usando um método de baixa energia (agitação manual). As SiNPs modificadas foram caracterizadas através de testes qualitativos, infravermelho, analise termogravimétrica, analise elementar e ressonância magnética nuclear de carbono treze e de silício vinte nove no estado sólido para confirmar o enxerto dos grupos funcionais. As propriedades das NPs em relação à sua dispersabilidade e comportamento em interfaces foram avaliadas por espalhamento de luz dinâmica e a tensão superficial crítica de molhabilidade. Finalmente, foram preparadas espumas líquidas e emulsões água-em-óleo (A/O) utilizando as partículas híbridas obtidas e pequenas quantidades de surfactantes, para facilitar o processo de dispersão. Os resultados mostraram que as NPs mais hidrofílicas estabilizam melhor a interface ar/água (espumas), enquanto a estabilização máxima em emulsões é obtida com as NPs mais hidrofóbicas, uma vez que a interação com a fase contínua é otimizada. Além disso, a presença de grupos funcionais na superfície das SiNPs oferece a possibilidade de obter efeitos de sinergia com os surfactantes, controlando a adsorção mista na interface. As aplicações potenciais destes resultados podem abranger diversas áreas, tais como biomedicina, ciência dos materiais, recuperação de petróleo, cosméticos e alimentos. / [en] Biphasic dispersions (e.g. foams and emulsions) are of practical relevance to many chemical and engineering fields. These dispersions are thermodynamically unstable, since their decay results in a decrease of the free energy. Different mechanisms can prevent the coalescence of the dispersion, such as electrostatic and steric stabilization. Recently, there has been an increased interest in the study of stabilization of emulsions and foams using solid particles (Pickering type), since particles can strongly adsorb at interfaces to form a solid film, replacing the incompatible water-oil(ar) interface by the more favorable oil(ar)-particle and particlewater interfaces. Depending on their size and contact angle of selective wetting, particle adsorption can become irreversible, with increased stability of particle-stabilized dispersions compared to surfactant-stabilized systems. Since particles of intermediate wettability by nature are relatively rare, tailoring particle wettability is the major challenge to obtain stable dispersions. In the present study, hybrid silica nanoparticles (SiNPs) were prepared by modification of their surface using 3 aminopropyltrimethoxysilane and hexadecyltrimethoxysilane as silanizing agents, to obtain three different nanoparticles with increased hydrophobicity, aiming to achieve highly stable biphasic dispersions using a low-energy method. The modified SiNPs were characterized using qualitative tests, FTIR, TGA, CHN and NMR (Si) to confirm grafting of functional groups. In addition, nanoparticle properties regarding aqueous dispersions and behavior at interfaces were evaluated by DLS and critical wetting surface tension. Liquid foams and water-in-oil (W/O) emulsions were prepared using the obtained hybrid particles and small amounts of different surfactants, to facilitate the dispersion process. The results showed that while more hydrophilic NPs stabilize better the air/water interface (foams), maximum stabilization in W/O emulsions is achieved with the most hydrophobic NPs, since interaction with continuous phase is optimized. In addition, the presence of different functional groups at the surface of the SiNPs offers the possibility for increased synergy with surfactants, controlling the mixed adsorption at the interface. The potential applications of these results can cover diverse fields such as biomedicine, materials science, oil recovery, cosmetics and food.
335

Biomedical applications of mesoporous silica particles

Ronhovde, Cicily J. 01 August 2017 (has links)
Mesoporous silica particles are of significant interest for biomedical applications due to their good general biocompatibility compared to other nanoparticle matrices such as quantum dots, high specific surface areas up to 1000 m2/g, and extreme synthetic tunability in terms of particle size, pore size and topology, core material, and surface functionalization. For one application, drug delivery, mesoporous silica nanoparticles (MSNs) of two pore structures, MCM-41 – parallel, hexagonally ordered pores approximately 3 nm in diameter – and wormhole (WO) – interconnected, disordered pores also approximately 3 nm in diameter – were synthesized with particle diameters under 100 nm. Additionally, a magnetic Fe3O4 nanoparticle core was incorporated into Fe3O4-core WO-MS-shell particles. The particles were loaded with doxorubicin, a chemotherapeutic, and the drug release into phosphate buffered saline (PBS, 10 mM, pH 7.4) at 37 °C was monitored by fluorescence spectroscopy. The data were fit to three models: Korsmeyer-Peppas, first order exponential release, and Weibull. The Korsmeyer-Peppas model provided useful information concerning the kinetics and mechanism of drug release from each MSN type. A small but statistically significant difference in the release kinetics was found due to the different pore topologies. A much larger kinetic effect was observed due to the inclusion of an iron oxide core. Applying a static magnetic field to the Fe3O4-core WO-MS shell particles did not have a significant impact on the doxorubicin release. This is the first time that the effects of pore topology and iron oxide core have been isolated from pore diameter and particle size for these materials. In vitro cell studies were conducted to determine the cytotoxicity of the bare and doxorubicin-loaded materials against three cancerous cell lines – A549 human lung carcinoma cells, HEC50CO human endometrial cancer cells, and CT26 mouse colon cancer cells. The MCM-41 and WO MSNs generally displayed similar toxicities within each cell line, and the Fe3O4-core WO-MS shell particles were less toxic. Doxorubicin-loaded particles generally displayed greater toxicity than bare MSNs, but the A549 cells were very resistant to all concentrations of MSNs tested. For another biomedical application, tissue phantom development, mesoporous silica particles with approximately 10 μm diameters and C18 surface functionalization were evaluated for their use as a substrate for optical tissue phantoms. Tissue phantoms are synthetic imitations of biological material, and C18-modified silica provides a substrate that is simple to load with optically active biological molecules. The molecules are then hydrophobically trapped to maintain a clear optical boundary between the biological loading within the particle and an aqueous suspension gel. Several preparation techniques were evaluated for the dispersal of hydrophobic particles in aqueous media, and qualitative analysis indicated that surfactant coating of the outer surface could fully disperse the hydrophobic particle while maintaining the clear optical boundary. A novel analysis was developed to provide a single numerical indicator of clustering for a quantitative assessment of particle dispersal in tissue phantoms.
336

Characterization of sand processed for use in hydraulic fracture mining

Stark, Aimee Lizabeth 01 May 2016 (has links)
Each hydraulic fracturing well uses up to 5,000 tons of silica-containing sand, or proppant, during its operational lifetime. Over one million wells are currently in operation across the continental United States. The resulting increase in demand resulted in the production of 54 million metric tons of sand for use as hydraulic fracturing proppant in 2015. The goal of this study was to determine the relative risk of occupational exposure to respirable crystalline silica to workers performing tasks associated with mining, processing, and transport of proppant. Sand samples were aerosolized in an enclosed chamber. Bulk and respirable samples were submitted to a commercial lab for silica analysis. A risk ratio was calculated by comparing respirable dust concentrations to the current occupational safety regulations. Raw sand produced higher concentrations of respirable dust and a higher risk ratio (3.2), while processed dust contained higher percentages of respirable crystalline silica but a lower risk ratio (0.5). When vibration was introduced prior to aerosolization, concentrations tended to increase as vibration times increased, resulting in an increase of the associated risk ratio (2.3). Results of the study indicate that workers in sand mines and workers exposed to proppant that has undergone low-frequency vibration are at increased risk of exposure to respirable crystalline silica compared to workers who are exposed to proppant that has not undergone vibration.
337

The study of pretreatment options for composite fouling of reverse osmosis membranes used in water treatment and production

Mustafa, Ghulam Mohammad, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Most common inorganic foulants in RO processes operating on brackish water are calcium carbonate, calcium sulphate and silica. However, silica fouling is the recovery limiting factor in RO system. Silica chemistry is complex and its degree of fouling strongly depends on the silica solubility and its polymerization under different operating conditions of RO process. In several studies carried out in batch and dynamic tests, the presence of polyvalent cations and supersaturation of silica in solutions were found to be the important factors (apart from pH and temperature) that affected the rate of silica polymerization and its induction period. Agitation did increased silica solubility; however, its effect was negligible in presence of polyvalent cations. Alkalization of water solution by coagulants particularly sodium hydroxide was found suitable for silica removal during pretreatment. The presence of magnesium in solution played a key role in silica removal mostly by the mechanism of adsorption to the metal hydroxide. The options of inline mixing (high agitation) for 5 to 10 minutes and microfiltration before RO were found suitable for silica pretreatment. During dynamic tests, the most dominant mechanism for salt deposition (mostly CaSO4) was particulate type in high concentration water solution; while crystallization fouling was the prevailing mechanism of deposition (mostly CaCO3 and silica) in low concentration solution. Silica showed significant effect on size and shape of inorganic salt crystals during coprecipitation. Moreover, the presence of common antiscalants promoted silica fouling. This important finding recommends an extra caution while using antiscalants in case feed water contains silica to a level that can attain saturation near membrane during RO process. A model was developed to predict the silica fouling index (SFI) based on the experimental data for induction period of silica polymerization. The model takes into account the effect of polyvalent cations and concentration polarization near membrane during RO process. It provides a conservative basis for predicting the maximum silica deposition in RO process at the normal operating conditions. A generalised correlation, which was developed for determination of the mass transfer coefficient in RO process, incorporated the effect of temperature change that is usually not considered in previous correlations. A correlation for reduction of silica content in feed water, down to a safe limit of 15 ppm for RO process, was also formulated and validated by the experimental results.
338

Single-Site Olefin Polymerization Catalysts via the Molecular Design of Porous Silica

McKittrick, Michael W. 25 March 2005 (has links)
The major goals of this work were to: develop a new methodology for the preparation of site-isolated catalytic sites on a silica surface, prepare the first truly single-site supported metallocene/CGC polymerization catalyst, and develop structure-reactivity relationships for these new systems. To synthesize these novel catalysts, the approach taken was to develop a protocol which allows for the synthesis of an aminosilica material with isolated, uniform amine sites. This patterned aminosilica was then used as a scaffold to support a constrained geometry catalyst. These functionalizations occurred at essentially a quantitative level, in stark contrast to previous literature reports. The patterned catalysts were evaluated in the polymerization of ethylene and compared to densely loaded literature materials. Overall, it was found the patterned materials were 5-10 times more active than traditional immobilized CGC catalysts. The patterned catalysts were also found to be effective catalysts for the copolymerization of norbornenes (including functionalized norbornenes) and ethylene, the first reported use of a tethered CGC for the production of ethylene-norbornene copolymers. The control materials were inactive in these polymerizations, providing further evidence that the patterning protocol allows for the synthesis of unique highly active, isolated catalytic sites. Various structural components of the immobilized CGC developed in this work were tested for their impact on catalyst synthesis and reactivity in ethylene polymerizations. The results showed the patterned materials in general behaved according to the trends seen in homogeneous CGC polymerizations. These results, while congruent with similar homogeneous CGC studies, are in direct conflict with previous work on supported CGCs reported in the literature. This discrepancy is likely the result of the difference between the isolated, possibly single-site patterned catalysts developed in the course of this work and the multi-sited catalysts prepared by traditional supporting protocols. This also further illustrates the difficulty in developing structure-reactivity relationships when ill-defined solid catalysts are used.
339

Reversible Attachment of Organic Dyes to Silica Surface Through Meijer-Type Hydrogen Bonding

Crowe, Loretta L. 11 August 2006 (has links)
In an approach to creating molecular-scale structures on glass surfaces via self assembly, a strongly-dimerizing ureido-[2-(4-pyrimidone)] (UPy) quadruple hydrogen-bonding array was chemically immobilized on silica surfaces by way of a triethoxysilane functionality. The unreacted surface silanols were then thoroughly passivated with a monofunctional organosilane, resulting in isolated UPy binding sites on the glass surface. These binding sites were found to selectively bind the strongly fluorescent perylenediimide (PDI) functionalized UPy molecules from solution, thus non-covalently linking the fluorophore to the surface. The association between the self-complementary molecules was exceptionally strong, both in solution and at the surface, such that effective hydrogen-bonding was retained after most solvent treatments. The binding was also reversible, however, so that washes with polar protic and dipolar aprotic solvents with high hydrogen-bonding capabilities, such as water, alcohols, and DMSO, resulted in the removal of the non-covalently bound fluorophore-tagged UPy. The UPy:UPy dimer system was also investigated in solution, using pyrene intramolecular excimer formation as a monitor of the dissociation of the pyrene heterodimers into homodimers incapable of forming excimers at micromolar concentrations. In addition, the energy transfer process in solution between pyrene and perylenediimide fluorophores linked through UPy dimerization was studied, with the intention using FRET-based measurements on the surface at single-molecule levels in order to determine the distances between UPy binding sites. Energy transfer was found to occur, but the observed photophysical behavior was complicated by possible secondary processes, which steady-state fluorescence measurements were unable to elucidate. The benefit of using this UPy system for attaching molecules to a surface lies in its reversibility of binding and versatility in manner of molecules which van be retained on the modified surface with a strong association. In this way molecular-scale features could conceivably be constructed on a surface by self-assembly, with the option of further chemical reactions to lock them in place, thus creating structures beyond the accessibility range of the conventional lithographic methods.
340

Synthesis of ordered mesoporous metal nanostructures

Tsai, Cheng-ying 24 July 2012 (has links)
In this study, we synthesized amphiphilic block copolymer Poly(ethylene glycol)-b-Poly(£`-caprolactone) (PEO-b-PCL), and the mesoporous silica and phenolic were synthesized by using EISA (evaporation induced self-assembly) strategy. The mesoporous carbon also obtained after carbonization. After incorporating the precursors into the mesoporous channels through incipient wetness impregnation and further hydrogen reduction, 3D body-centered cubic (BCC) metal network/silica, metal nanowires/silica, metal/phenolic, and metal/carbon nanocomposites could be obtained. Moreover, metal replica was obtained through HF etching. Transmission electron microscope (TEM) and the small angle X-ray scattering (SAXS) patterns indicate that the parent ordered mesoporous structure was well-maintained during the synthesis process. The X-ray diffraction (XRD) and selected-area electron diffraction (SAED) demonstrate that Pd and Ag were reduced within the channels of mesoporous materials. The pore size distribution and BET surface area of mesoporous materials and metal/mesoporous materials composite were recorded by N2 isotherm adsorption-desorption experiment. In the future, we expect that the mesoporous metal and mesoporous nanocomposite with specific morphologies behave excellent performance in various applications, such as catalysis, gas sensors, nano electronic/optical devices and medical diagnosis.

Page generated in 0.0341 seconds