Spelling suggestions: "subject:"[een] SOLAR CELL"" "subject:"[enn] SOLAR CELL""
291 |
Radiative Passive Cooling for Concentrated PhotovoltaicsZe Wang (8088254) 06 December 2019 (has links)
<p>Photovoltaic (PV) cells have become an increasingly ubiquitous
technology; however, concentrating photovoltaics (CPV), despite their higher
theoretical efficiencies and lower costs, have seen much more limited adoption. Recent
literature indicates that thermal management is a key challenge in CPV systems. If not
addressed, it can negatively impact efficiency and reliability (lifetime). Traditional
cooling methods for CPV use heat sinks, forced air convection or liquid cooling, which
can induce an extremely large convection area, or parasite electric consumption. In
addition, the moving parts in cooling system usually result in a shorter life time
and higher expense for maintenance. Therefore, there is a need for an improved cooling
technology that enables significant improvement in CPV systems. As a passive and
compact cooling mechanism, radiative cooling utilizes the transparency window
of the atmosphere in the long wavelength infrared. It enables direct heat exchange
between objects on earth’s surface with outer space. Since radiated power is
proportional to the difference of the fourth powers of the temperatures of PV and ambient,
significantly greater cooling powers can be realized at high temperatures,
compared with convection and conduction. These qualities make radiative cooling a promising
method for thermal management of CPV. In this work, experiments show that a
temperature drop of 36 degree C have been achieved by radiative cooling, which results in an
increase of 0.8 V for open-circuit voltage of GaSb solar cell. The corresponding
simulations also reveal the physics behind radiative cooling and give a thorough analysis
of the cooling performance.</p>
|
292 |
Outdoor Stability Testing of Printed Organic Solar Cells for Indoor Applications / Stabilitetstester Utomhus av Printade Organiska Solceller Optimerade för InomhusbrukHekkala, Cathrine January 2020 (has links)
Renewable energy is required for a sustainable future and one way to meet this is with organic solar cells (OSCs). The OSC can be easily manufactured at a low cost, be lightweight and be used on flexible surfaces. If the efficiency in high illumination intensities and stability in harsh environments increase for OSCs, they can com- pete with the other technologies even in outdoor conditions. Another advantage of OSCs is their good performance under low-light and indoor conditions. This is utilized by Epishine, a Swedish company based in Linköping working with small, thin and flexible organic printed solar cells optimized for indoor applications. The goal of this thesis is to determine how Epishine’s solar cells for low-light indoor usage work in more challenging conditions and to identify which are the factors that are detrimental for the lifetime of the cells. The result showed that all modules had a similar initial electrical performance which indicates that the modules have high reproducibility and degradation in darkness is negligible (since the initial measurements were made at different times). The tests showed that the temperature affected the modules. The test in the oven showed a little less than half the degradation compared to tests under the solar simulator, although both tests were subjected to the same temperature. The hu- midity test and the test exposed to LED-light showed almost no degradation. For the levels exposed to the sun or simulated sunlight, the decrease of the short circuit current density shows a burn-in time, which is typical for organic solar cells. After the first couple of hours, the decrease slows down to a more linear behaviour. All modules that were exposed to bright light also showed some recovery effect for short circuit current density and efficiency after they have been kept in the dark. It would be interesting to investigate the behaviour of the modules after even more exposure and look into how the recovery effect works.
|
293 |
Characterization of as prepared and exposed Perovskitesolar cells by microscopic and spectroscopic techniquesGorella, Nagaraju January 2021 (has links)
Studying the microstructural features, optical, and electrical properties of the thin-filmperovskite solar cells (PSC) is the main objective of this thesis work. All the PSCs used in thisthesis work were prepared by spin coating assisted with gas quenching process and the samplesreceived from Interuniversity Microelectronics Centre (IMEC), Belgium.Microstructural and architectural details of the stagewise prepared PSCs were investigatedusing a Scanning Electron Microscope (SEM) - Focused Ion Beam (FIB) technique. With thereference to the given specification from IMEC, the SEM-FIB examinations of the as-preparedPSCs confirmed the presence of different layers such as hole transport layer (HTL), perovskitelayer, and electron transport layer (ETL). Further, the thickness of the perovskite layers wasmeasured and found to be 400 and 500 nm which validates the specification of the as-preparedsamples 1 and 2, respectively. The observed average grain size of the perovskite of the asprepared samples 1 and 2 are significantly different and the values are approximately 83 and169 nm, respectively. The average surface roughness values of perovskite layers (as-preparedsamples 1 and 2) and electron transport layer (as-prepared samples 3) were evaluated by atomicforce microscopy (AFM) and the values are 10, 19, and 12 nm, respectively. Furthermore, theconductive-AFM was performed to evaluate the electrical properties of the perovskite layers,and the results confirmed that the as-prepared sample 2 showed a higher mean current value of4.1 nA, than sample 1 resulted in 2.9 nA. The higher electrical performance of the as-preparedsample 2 could be correlated to the larger grain size, higher thickness, and higher surfaceroughness values of the perovskite layer.Moreover, the performance evaluation of a complete perovskite solar device with a similarconfiguration was evaluated between the as-prepared (newly fabricated) and the exposedsamples (tested under sunlight for ten weeks), and their behavior was studied. The optical andelectrical characteristics of the solar cell at the device level were examined with the help ofphotoluminescence (PL), electroluminescence (EL), and solar simulator techniques. The peakand fullwidth half maximum (FWHM) values of the PL emission spectra of the as-prepareddevice are in line with IMEC specification, whereas these values are slightly decreased for theexposed perovskite solar device. Also, during the EL examination, predominantly uniformluminescence was observed for the as-prepared device, whereas discontinuity in the emissionof electrons, and in some parts absence of luminescence-effect was observed for the exposedsolar cell. The current-voltage characteristics obtained from the solar simulator resultsconfirmed that the power conversion efficiency of the as-prepared device is at least 6 timeshigher than the exposed device. Based on the PL, EL, and PCE results it could be confirmedthat the perovskite solar cell exposed to sunlight for 10 weeks has started to degrade.
|
294 |
Electron Beam-based Techniques for the Characterization of Nanowire Solar Cells / Caractérisation des Cellules Solaires à Nanofils avec Techniques par Faisceau d’ElectronsPiazza, Valerio 13 December 2018 (has links)
Bien que les nanofils III-V soient reconnus comme des candidats prometteurs pour le développement de cellules solaires de nouvelle génération pour leurs propriétés optiques très attractives, l'amélioration des performances attendue par rapport à leurs homologues 2D n'a pas encore été démontrée. L’investigation à l’échelle nanométrique est essentielle pour comprendre l'origine de l'écart existant entre les prédictions théoriques et les démonstrations expérimentales. L’analyse des nanofils uniques devrait permettre d'élucider les facteurs limitants (liés par exemple aux propriétés électriques des jonctions p-n internes, à l'homogénéité fil-à-fil et aux éventuelles défaillances) et de proposer des solutions pour améliorer les performances des dispositifs photovoltaïques à nanofils.Cette thèse explore l’utilisation des techniques de caractérisation par faisceau d’électrons pour extraire les paramètres fondamentaux pour la conversion photovoltaïque afin d’optimiser les propriétés de nanofils III-V crus sur Si.L’étude à l’échelle nanométrique porte tout d’abord sur des nanofils de GaAs et AlGaAs avec une jonction radiale. A la suite de cette étude, la structure interne de nanofils a pu être améliorée. La caractérisation de dispositifs de taille millimétrique confirme l’amélioration des performances à l’échelle macroscopique.Des nanofils InGaP crus par une nouvelle méthode (Template Assisted Selective Epitaxy où TASE) ont aussi été étudiés et le niveau de dopage a été estimé par la microscopie EBIC. De plus, la réponse photovoltaïque de ces structures été observée pour la premier fois. Les propriétés électriques des nanofils GaAs avec une jonction axiale crus par la même technique ont aussi été caractérisées.Enfin, des nanofils avec deux jonctions InP/InGaP sont été étudiés comme première tentative pour fabriquer une cellule solaire tandem entièrement à nanofils. L’activité électrique des deux jonctions été observée et caractérisée. En revanche, le fonctionnement de la structure tandem s’est trouvé limité par la jonction tunnel qui connecte électriquement les deux jonctions. / Although III-V nanowires (NWs) are recognized as promising candidates for the development of new generation solar cells thanks to their very attractive optical properties, the expected performance improvement over their 2D counterparts has not yet been demonstrated. Nanoscale analyses by electron beam-based techniques (EBIC,CL) are expected to elucidate the limiting factors and to propose solutions for enhancing the performance of NW photovoltaic (PV) devices.This PhD thesis applies the electron beam probe techniques to get access to the key parameters governing the PV conversion at a single NW level in order to further optimize the properties of III-V NWs grown on Si.First, GaAs and AlGaAs NWs containing a radial junction are investigated at the nanoscale and their internal structure is optimized. The characterization of mm-sized devices confirms the improvement of the device performance at the macroscopic level.Then InGaP and GaAs NWs grown by a novel Template Assisted Selective Epitaxy (TASE) method containing an axial junction are studied. The doping level in the ternary alloy is estimated by EBIC and the photovoltaic response of these structures is demonstrated for the first time.Finally, InP/InGaP dual junction NWs are characterized. Although both top and bottom junctions are electrically active under excitation, the performance of the tandem structure is limited by the connecting tunnel junction
|
295 |
Inkjet-Printed Highly Transparent Solar Cell AntennasArellano, Jesus A. 01 December 2011 (has links)
Small satellites, especially Cube Satellites (CubeSats), have become important vehicles for space exploration. One of the challenges CubeSats face is limited surface area. This limitation poses a question for antenna design–where to mount the antenna? This thesis presents a study where the antennas are directly integrated on top of solar cells. In order to achieve such integration, the antennas have to be highly transparent to light. This thesis aims at the transparency of 95%. Methods to effectively generate transparent antenna by using inkjet printing are discussed in detail and interaction between solar cells and antennas have been assessed and presented. It is found that the presence of solar cells cast a degree of gain reduction of the antenna, but such a loss may be improved with a more precise integration and by increasing the operational frequency. The effect of the antenna on solar cell performance is concluded to be less than 3%, promising a feasibility of implementing highly transparent antennas on CubeSats.
|
296 |
Transparent Solar Panel Antenna ArrayYekan, Taha Shahvirdi Dizaj 01 May 2016 (has links)
This dissertation research presents a comprehensive study to answer the question of “Can it be possible to integrate a high gain optically transparent antenna array directly on top of solar cells?”. The answer to such question is extremely important in space exploration where very small satellites have been extensively employed. Due to their small mass and size, those small satellites create challenges for one to mount the antennas, and the challenge is further increased when a high gain antenna is need for more communication capacity. Based on feasibility studies, the dissertation concludes that it is possible to do such an integration, and then proceeds to present the approaches for design and integration. On the element level, the thesis presents research in assessing the effects between a planar antenna integrated on the solar cell and the photovoltaic cell. A series of experiments were designed to perform assessments for antennas operating from C to X bands. It is concluded that a commercial triple junction space–certified solar cell normally would decrease the gain of the antenna to 2–3 dB and is not affected by the working states of solar cells. The shadow of the antenna casts on solar cells, however, is not significant (less than 2%). The thesis also provides a model of a common space solar cell that helps to explain the gain loss. The model was validated by experimental data, and it was utilized to predict iv a possible custom design of solar cell where with a minimal design modification, it would facilitate less gain loss of the antenna integrated on top. On the array level, the research surveys different high gain antenna array design and then focus on an optimal sub–wavelength reflectarray design. The final antenna array design is a 30 cm by 20 cm, X band (8.475 GHz) reflectarray that shows 94% transparency, 24 dB gain, and higher than 40% aperture efficiency. The design is then prototyped and tested on actual solar panel. The measurement of the reflectarray placed on the solar panel showed a gain of 22.46 dB and an aperture efficiency of 29.3%. While those results are considered excellent, the thesis continues to address the reasons for reduction of the antenna’s performance due to the solar panel, through both theoretical analysis and experiments.
|
297 |
A Fundamental Study of Bulk, Layered, and Monolayers of Hybrid PerovskitesJanuary 2019 (has links)
abstract: A Fundamental study of bulk, layered, and monolayers bromide lead perovskites structural, optical, and electrical properties have been studied as thickness changes. X-Ray Diffraction (XRD) and Raman spectroscopy measures the structural parameter showing how the difference in the thicknesses changes the crystal structures through observing changes in average lattice constant, atomic spacing, and lattice vibrations.
Optical and electrical properties have also been studied mainly focusing on the thickness effect on different properties where the Photoluminescence (PL) and exciton binding energies show energy shift as thickness of the material changes. Temperature dependent PL has shown different characteristics when comparing methylammonium lead bromide (MAPbBr3) to butylammonium lead bromide (BA2PbBr4) and comparing the two layered n=1 materials butylammonium lead bromide (BA2PbBr4) to butylammonium lead iodide (BA2PbI4). Time-resolved spectroscopy displays different lifetimes as thickness of bromide-based perovskite changes. Finally, thickness dependence (starting from monolayers) Kelvin Probe Force Microscopy (KPFM) of the layered materials BA2PbBr4, Butylammonium(methylammonium)lead bromide (BA2MAPb2Br7), and molybdenum sulfide (MoS2) were studied showing an exponential relation between the thickness of the materials and their surface potentials. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2019
|
298 |
Effect of zinc oxide nanoridge height on solar cell performanceSeabi, Magdeline Mohlao January 2021 (has links)
>Magister Scientiae - MSc / Environmentally friendly photovoltaic devices make use of solar radiation as the energy source to generate electricity. Organic solar cells (OSCs) have been making headway in the last decade due to their cost-effectiveness and potential application in flexible devices. One of the disadvantages of OSCs is the short lifetime of the charge carriers, where the various interfaces that are present in the material play a significant role. In the inverted organic solar cell (IOSC), electrons are injected into the transparent conducting oxide, whereby the electrode alignment is reversed compared to the conventional structure. Nanosized zinc oxide (ZnO) thin-films with nanoridges/ripples embedded on the surface of the thin-film can be used as an electron transport/hole-blocking layers in inverted organic solar cells to enhance light-capturing by the active layer of the solar cell.
|
299 |
A Device Model for Intermediate Band SemiconductorsDumitrescu, Eduard Christian 18 January 2022 (has links)
Semiconductors with an additional intermediate band (IB) have the potential to greatly improve solar cell efficiency. Their theoretical efficiency limit is over 50% higher than that of standard semiconductor solar cells at full concentration. In practice however, their efficiencies are low compared to this detailed balance limit. Part of the reason is that it has not been possible to optimize IB device geometry because no device model has existed that could capture all the effects present in IB materials (e.g., charge transport inside the IB and self-consistent optics). In this thesis I introduce my new device model for intermediate band semiconductors called Simudo. The software uses the finite element method to solve the coupled Poisson/drift-diffusion (PDD) system of equations that describe the carrier dynamics inside semiconductor (IB or not) devices, along with optical propagation. I benchmark its accuracy on standard semiconductor problems against Synopsys Sentaurus, and I find that not only does it give valid results but in fact converges to the solution with a smaller number of mesh points by having quartic rather than merely quadratic solution convergence with respect to the number of mesh points. I also demonstrate Simudo's immediate usefulness by answering the question of whether IB mobility can compensate for mismatched optical absorption processes in different regions of the device. The device model work is preceded by three introductory chapters bringing the reader up to speed on semiconductor device physics and providing them with a primer on the finite element method. The coupled PDD equations are numerically challenging to solve, and the road to development of Simudo tried a number of formulations of the problem that were not successful. In the final chapter I discuss some of these formulations and why they did not succeed.
|
300 |
Sub-Gap Absorption and Performance Losses in Mixed Cation Perovskites for Solar CellsSubedi, Biwas January 2020 (has links)
No description available.
|
Page generated in 0.0633 seconds