Spelling suggestions: "subject:"[een] SPINEL"" "subject:"[enn] SPINEL""
41 |
An assessment of the production of fine material in iron ore sinterVan den Berg, T. January 2008 (has links)
Thesis (MSc.(Materials Science and Metallurgical Engineering)--University of Pretoria, 2008. / Summary in English. Includes bibliographical references.
|
42 |
Frittage micro-ondes du matériau spinelle MgAl2O4 : vers des céramiques transparentes / Microwave sintering of spinel MgAl2O4 : towards transparent ceramicsMacaigne, Rodolphe 21 November 2017 (has links)
Les conditions nécessaires pour obtenir des céramiques transparentes (absence de porosité, absence de seconde phase) requièrent une totale maitrise de chacune des étapes (synthèse, mise en forme, frittage) intervenant dans le processus, ce qui rend encore difficile l'industrialisation d'un procédé d'élaboration reproductible. Dans ce contexte, ce travail de thèse s’est focalisé à développer et évaluer la capacité du procédé de frittage micro-ondes à améliorer la robustesse du processus d'élaboration de spinelle transparent. La mise en place d'un dispositif de dilatométrie optique et une nouvelle technique de calibration originale, basée sur la fusion d'oxyde, ont permis de caractériser le frittage micro-ondes du spinelle pur avec une plus grande confiance. Même si aucun effet lié au procédé micro-onde n’a pu être mis en évidence pour le frittage du spinelle pur (trajectoire de frittage, mécanisme de densification et évolution de la porosité identiques), ces travaux ont démontré que l’impact de dopants pouvait être amplifié en présence du rayonnement micro-ondes. Ainsi, un décalage des courbes de retrait vers les basses températures a été observé lors du frittage micro-ondes du spinelle dopé avec TiO2 et MgO. L'existence d'un couplage particulier entre les défauts ponctuels chargés (lacunes, cations interstitiels) et le champ électrique pourrait être à l'origine de ce phénomène. Ces travaux de thèse ont également démontré la faisabilité de fritter des pièces de spinelle carrées de grandes dimensions (< 65 mm) compatibles avec un post-traitement HIP, en vue d'obtenir des pièces transparentes. Pour cela, un four micro-ondes monomode 915 MHz a été automatisé et une cellule de frittage adaptée a été développée. A l'issue du traitement HIP, les pièces ont présenté une transparence et des propriétés mécaniques (dureté; ténacité) comparables à celles des pièces pré frittées par voie conventionnelle. / The elaboration of transparent ceramics (no porosity, no second phase) requires a strict control of all steps of the process (synthesis, shaping, sintering). As a result, the industrialization of a reproducible process is still difficult to achieve. In this context, this thesis has focused on developing and evaluating the ability of the microwave sintering process to improve the robustness of the transparent spinel elaboration process.The set-up of an optical dilatometer and a new original calibration method, based of melting of different oxides, allowed to characterize the microwave sintering with a greater confidence. Even if no microwave effect has been observed on the sintering of pure spinel (identical sintering trajectory, densification mechanism and porosity evolution), this work has shown an amplification of the impact of dopants during microwave sintering. A shift of the shrinkage curves towards the low temperatures was observed during the microwave sintering of the spinel doped with TiO2 and MgO. The existence of a particular interaction between charged point defects (vacancies, interstitial cations) and the electric field could explain this phenomenon.This work thesis has shown also the feasibility of sintering of large square spinel pieces (< 65 mm) compatible with post treatment HIP in order to produce transparent ceramics. For this purpose, the microwave system working at 915 MHz was automatized and a new sintering configuration was developed. After a post-treatment, the transparency and mechanical properties (hardness; tenacity) of microwave pre-sintered samples were comparable with those of samples sintered by conventional heating.
|
43 |
Magnetismus v oxidech tranzitivních kovů / Magnetism in transition metal oxidesBurianová, Simona January 2010 (has links)
The CoFe2O4 nanocrystals are highly attractive due to their magnetic properties - large coercivity (up to 2 T at low temperatures) with moderate saturation magnetization (80 A.m2.kg-1), remarkable chemical stability and mechanical hardness. Upon RE doping, a significant change of the properties is expected. This thesis is focused on investigation of Co1-LaxFe2O4, x = 0.05 - 0.5 and CoLaxFe2-x O4 x = 0.05 - 0.2 nanoparticles prepared by sol-gel and microemulsion method, respectively, with varying particle size according to the final heat treatment. In the former case, the particles were embedded in amorphous SiO2 matrix, while in the latter case, the samples were matrix-free. The samples were characterized using X-ray diffraction and Mössbauer spectroscopy. Measurements of the temperature dependence of the ZFC-FC magnetization revealed that the blocking temperature is above the room temperature. The values of coercivity and saturation magnetization strongly depend on particles size determined by method of preparation. The higher coercivity values of about 2 T at 10 K show the samples prepared by the sol-gel method. The obtained results are discussed in the context of preparation method, particle size and level of La doping.
|
44 |
Lithium manganese oxide (LiMn2O4) spinel surfaces and their interaction with the electrolyte contentRamogayana, Brian January 2020 (has links)
Thesis (M.Sc. (Physics)) -- University of Limpopo, 2020. / This dissertation presents the results of the ab-initio based computational studies of spinel
lithium manganese oxide (LiMn2O4) bulk, surfaces, and the adsorption of an organic
electrolyte, ethylene carbonate. The spinel LiMn2O4 is one of the most promising cathode
materials for Lithium-ion batteries because of its affordability, nontoxicity, and improved
safety compared to commercially used LiCoO2. However, it also suffers from the
irreversible capacity due to the electrolyte-cathode interactions which lead to manganese
(Mn) dissolution. Using the spin-polarized density functional theory calculations with on site Coulomb interactions and long-range dispersion corrections [DFT+U−D3−(BJ)], we
investigated the bulk properties, surface stability and surface reactivity towards the
ethylene carbonate (EC) during charge/discharge processes. Firstly, we explored the
structural, electronic, and vibrational bulk properties of the spinel LiMn2O4. It was found
that the bulk structure is a stable face-centred cubic structure with a bandgap of 0.041 eV
and pseudo-gap at the Fermi level indicating electronic stability. Calculated elastic
constants show that the structure is mechanically stable since they obey the mechanical
stability criteria. The plotted phonon curves show no imaginary vibrations, indicating
vibrational stability. To study the charge/discharge surfaces, we modelled the fully
lithiated and the partially delithiated slabs and studied their stability. For the fully lithiated
slabs, Li-terminated (001) surface was found to be the most stable facet, which agrees
with the reported experimental and theoretical data. However, upon surface delithiation,
the surface energies increase, and eventually (111) surface becomes the most stable
slab as shown by the reduction of the plane in the particle morphologies. Finally, we
explored the surface reactivity towards the ethylene carbonate during charge/discharge
processes. The ethylene carbonate adsorption on the fully lithiated and partly delithiated
facets turn to enhance the stability of (111) surface. Besides the strong interaction with
the (111) surfaces, a negligible charge transfer was calculated, and it was attributed by a
large charge rearrangement that takes place within the surfactant upon adsorption. The
wavenumbers of the C=O stretching showed a red shifting concerning the isolated EC
molecule
|
45 |
Computer simulation studies of spinel LiMn2O4 and spinel LiNiXMn2-XO4 (0≤x≤2)Malatji, Kemeridge Tumelo January 2019 (has links)
Thesis (Ph.D. (Physics)) -- University of Limpopo, 2019 / LiMn2O4 spinel (LMO) is a promising cathode material for secondary lithium-ion
batteries which, despite its high average voltage of lithium intercalation, suffers
crystal symmetry lowering due to the Jahn-Teller active six-fold Mn3+ cations.
Although Ni has been proposed as a suitable substitutional dopant to improve the
energy density of LiMn2O4 and enhance the average lithium intercalation voltage,
the thermodynamics of Ni incorporation and its effect on the electrochemical
properties of this spinel are not fully understood.
Firstly, structural, electronic and mechanical properties of spinel LiMn2O4 and
LiNixMn2-xO4 have been calculated out using density functional theory employing the
pseudo-potential plane-wave approach within the generalised gradient
approximation, together with Virtual Cluster Approximation. The structural
properties included equilibrium lattice parameters; electronic properties cover both
total and partial density of states and mechanical properties investigated elastic
properties of all systems. Secondly, the pressure variation of several properties was
investigated, from 0 GPa to 50 GPa. Nickel concentration was changed and the
systems LiNi0.25Mn1.75O4, LiNi0.5Mn1.5O4 LiNi0.75Mn1.25O4 and LiNi0.875Mn1.125O4 were
studied. Calculated lattice parameters for LiMn2O4 and LiNi0.5Mn1.5O4 systems are
consistent with the available experimental and literature results. The average
Mn(Ni)-O bond length for all systems was found to be 1.9 Å. The bond lengths
decreased with an increase in nickel content, except for LiNi0.75Mn1.25O4, which gave
the same results as LiNi0.25Mn1.75O4. Generally, analysis of electronic properties
predicted the nature of bonding for both pure and doped systems with partial density
of states showing the contribution of each metal in our systems. All systems are
shown to be metallic as it has been previously observed for pure spinel LiMn2O4,
and mechanical properties, as deduced from elastic properties, depicted their
stabilities.
Furthermore, the cluster expansion formalism was used to investigate the nickel
doped LiMn2O4 phase stabilities. The method determines stable multi-component
crystal structures and ranks metastable structures by the enthalpy of formation while iv
maintaining the predictive power and accuracy of first-principles density functional
methods. The ground-state phase diagram with occupancy of Mn 0.81 and Ni 0.31
generated various structures with different concentrations and symmetries. The
findings predict that all nickel doped LMO structures on the ground state line are
most likely stable. Relevant structures (Li4Ni8O16, Li12MnNi17O48, Li4Mn6Ni2O16,
Li4Mn7NiO16 and Li4Mn8O16) were selected on the basis of how well they weighed
the cross-validation (CV) score of 1.1 meV, which is a statistical way of describing
how good the cluster expansion is at predicting the energy of each stable structure.
Although the structures have different symmetries and space groups they were
further investigated by calculating the mechanical and vibrational properties, where
the elastic constants and phonon vibrations indicated that the structures are stable
in accordance with stability conditions of mechanical properties and phonon
dispersions.
Lastly, a computer program that identifies different site occupancy configurations for
any structure with arbitrary supercell size, space group or composition was
employed to investigate voltage profiles for LiNixMn2-xO4. The density functional
theory calculations, with a Hubbard Hamiltonian (DFT+U), was used to study the
thermodynamics of mixing for Li(Mn1-xNix)2O4 solid solution. The results suggested
that LiMn1.5Ni0.5O4 is the most stable composition from room temperature up to at
least 1000K, which is in excellent agreement with experiments. It was also found
that the configurational entropy is much lower than the maximum entropy at 1000K,
indicating that higher temperatures are required to reach a fully disordered solid
solution. The maximum average lithium intercalation voltage of 4.8 eV was
calculated for the LiMn1.5Ni0.5O4 composition which correlates very well with the
experimental value. The temperature has a negligible effect on the Li intercalation
voltage of the most stable composition. The approach presented here shows that
moderate Ni doping of the LiMn2O4 leads to a substantial change in the average
voltage of lithium intercalation, suggesting an attractive route for tuning the cathode
properties of this spinel. / National Research Foundation (NRF)
|
46 |
Effect of zirconium dioxide addition and nonstoichiometry on sintering and physical property of magnesium aluminate spinelKim, Juyoung January 1992 (has links)
No description available.
|
47 |
Structure and Electrical Conductivity of Mn-based Spinels Used as Solid Oxide Fuel Cell Interconnect CoatingsWANG, YADI 10 1900 (has links)
<p>At solid oxide fuel cell (SOFC) operating temperatures (650<sup>o</sup>C--800<sup>o</sup>C), the chromia scale growth on the interconnect surface and chromium poisoning of cathode can lead to performance degradation of the whole cell. A spinel coating can be effective for blocking chromium outward diffusion to overcome this issue. In this thesis, two spinel-forming systems, Zn-Mn-O and Co-Cu-Mn-O were studied to identify a suitable coating.</p> <p>In-situ high temperature XRD was used to identify the phases in the Zn-Mn-O system between 600<sup>o</sup>C and 1300<sup>o</sup>C. The results showed that cubic spinel phase was stable only at high temperatures (above 1200<sup>o</sup>C) and when the temperature decreases, the cubic phase tends to deform to tetragonal structure. In addition, the conductivity results showed low conductivities (below 3 S/cm) at SOFC operating temperature. Thus, the Zn-Mn-O system is not suitable for SOFC interconnect coatings.</p> <p>Another potential coating material analyzed was the Co-Cu-Mn-O system. This system exhibited promising conductivity values. Electrodeposition was used to apply Co-Cu-Mn-O coatings on both ferritic stainless steel and chromium-based alloy (Cr-5Fe) followed by oxidation in air at 800<sup>o</sup>C. The spinel coating formed nicely on the stainless steel substrate. However, on the chromium plate, nitride formation, blistering and metal isolation were the common problems that occurred during the oxidation process. In order to improve the quality of coating on the chromium alloy, different heat treatments were explored, such as annealing in reducing atmosphere, oxidation in pure oxygen / mixed gas and decreasing the oxidation temperature. The objective of modifying the heat treatment was to produce adherent, dense coatings.</p> / Master of Applied Science (MASc)
|
48 |
Magnetic couplings and superparamagnetic properties of spinel ferrite nanoparticlesVestal, Christy Riann 03 1900 (has links)
No description available.
|
49 |
Sinteza i karakterizacija nanočestičnih prahova na bazi cink-ferita / Synthesis and characterisation of nanoparticles based on zinc-ferritesMilanović Marija 02 July 2010 (has links)
<p>U ovom radu prikazani su rezultati ispitivanja strukturnih i magnetnih osobina čistih cink- ferita, ZnFe<sub>2</sub>O<sub>4</sub> i cink-ferita sa dodatkom indijuma Zn<sub>1-x</sub>In<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> i itrijuma, ZnY<sub>x</sub>Fe<sub>2-x</sub>O<sub>4</sub>, gde je 0 ≤ x ≤ 0,6. Prahovi na bazi cink-ferita su sintetisani koristeći nisko temperaturnu metodu sinteze iz tečne faze – metodu koprecipitacije. Osnovni cilj ove doktorske disertacije je bio da se utvrdi veza između uslova sinteze, uticaja različitih katjona, strukture i osobina čistih cink-feritnih nanočestica, kao i cink-ferita sa dodatkom indijuma i itrijuma. Radi praćenja uticaja veličine čestica dobijenog praha na strukturu i osobine ovih materijala, sintetisani čist cink-ferit je kalcinisan na različitim temperaturama. Posebno je razmatran i uticaj dodatka različitih jona na distribuciju i preraspodelu katjona u spinelnoj strukturi. Pored toga ispitivan je uticaj tako pripremljenih prahova na njihove magnetne osobine. Rentgenostrukturna i TEM analize potvrdili su da ispitivani uzorci spadaju u klasu nanomaterijala spinelne strukture. Analiza Raman i Mössbauer spektara je ukazala na moguću raspodelu katjona između tetraedarskih i oktaedarskih mesta, te formiranje delimično inverznog spinela. Ispitivanja magnetnih osobina su pokazala da histerezisne petlje ne pokazuju saturaciju u prisustvu jakog magnetnog polja, što je potvrdilo superparamagnetnu i jednodomensku prirodu čestica. Pokazano je da pored uticaja veličine čestica, dodatak različitih katjona (u ovom slučaju itrijum i indijum) ima veliki uticaj na uređenje strukture, a posledično i na magnetno ponašanje ispitivanih nanočestičnih sistema.</p> / <p> This thesis presents the results of the investigation of the structural and magnetic properties of nanostructured zinc ferrites, ZnFe2O4 and zinc ferrites supstituted with different amount of indium and yttrium, Zn1-xInxFe2O4 and ZnYxFe2-xO4 (0 ≤ x ≤ 0,6). Powders based on zinc ferrites were synthesised by a low temperature wet-chemical method – coprecipitation. The main purpose of this thesis was to establish the relationship between the synthesis, dopants, structure and properties of zinc ferrite based materials. Nanoparticles of ZnFe2O4 were calcined at different temperatures in order to elucidate the influence of the particle size on the magnetic properties of the obtained nanoparticles. In addition, we have investigated the effect of dopant addition on cation distribution in spinel structure, in order to modify the magnetic properties and to obtain the magnetic ceramics with improved properties compared to the bulk-counterparts. The results of X-ray and TEM analyses confirmed the nanosized nature and spinel type structure of the investigated samples. Raman and Mössbauer spectroscopy studies implied on the possible cation distribution between the tetrahedral and octahedral sites and formation of the partially inversed spinel. The study of the magnetic properties showed that hysteresis loops do not saturate even in the presence of high magnetic fields, which confirmed the superparamagnetic and single domain nature of the samples. These observations imply that, besides the particle size, doping (e.g. yttrium and indium) causes significant structural rearrangements which in turn induce changes in magnetic behavior of the investigated nanoparticulate systems.</p>
|
50 |
Size and Shape Controlled Synthesis and Superparamagnetic Properties of Spinel Ferrites NanocrystalsSong, Qing 26 August 2005 (has links)
Size and Shape Controlled Synthesis and Superparamagnetic Properties of Spinel Ferrites Nanocrystals
Qing Song
216 pages
Directed by Dr. Z. John Zhang
The correlationship between magnetic properties and magnetic couplings is established through the investigations of various cubic spinel ferrite nanocrystals. The results of this thesis contribute to the knowledge of size and shape controlled synthesis of various spinel ferrites and core shell architectured nanocrystals as well as the nanomagnetism in spinel ferrites by systematically investigating the effects of spin orbital coupling, magnetocrystalline anisotropy, exchange coupling, shape and surface anisotropy upon superparamagnetic properties of spinel ferrite nanocrystals. A general synthetic method is developed for size and shape control of metal oxide nanocrystals. The size and shape dependent superparamagnetic properties are discussed. The relationship between spin orbital coupling and magnetocrystalline anisotropy is studied comparatively on variable sizes of spherical CoFe2O4 and Fe3O4 nanocrystals. It also addresses the effect of exchange coupling between magnetic hard phase and soft phase upon magnetic properties in core shell structured spinel ferrite nanocrystals. The role of anisotropic shapes of nanocrystals upon self assembled orientation ordered superstructures are investigated. The effect of thermal stability of molecular precursors upon size controlled synthesis of MnFe2O4 nanocrystals and the size dependent superparamagnetic properties are described.
|
Page generated in 0.0422 seconds