Spelling suggestions: "subject:"[een] STOCHASTIC DIFFERENTIAL EQUATION"" "subject:"[enn] STOCHASTIC DIFFERENTIAL EQUATION""
21 |
Data-driven Parameter Estimation of Stochastic Models with Applications in FinanceAyorinde, Ayoola January 2024 (has links)
Parameter estimation is a powerful and adaptable framework that addresses the inherent complexities and uncertainties of financial data. We provide an overview of likelihood functions, and likelihood estimations, as well as the essential numerical approximations and techniques. In the financial domain, where unpredictable and non-stationary market dynamics prevail, parameter estimations of relevant SDE models prove highly relevant. We delve into practical applications, showcasing how SDEs can effectively capture the inherent uncertainties and dynamics of financial models related to time evolution of interest rates. We work with the Vašíček model and Cox-Ingersoll-Ross (CIR) model which describes the dynamics of interest rates over time. We incorporate the Maximum likelihood and Quasi-maximum likelihood estimation methods in estimating the parameters of our models.
|
22 |
Price modelling and asset valuation in carbon emission and electricity marketsSchwarz, Daniel Christopher January 2012 (has links)
This thesis is concerned with the mathematical analysis of electricity and carbon emission markets. We introduce a novel, versatile and tractable stochastic framework for the joint price formation of electricity spot prices and allowance certificates. In the proposed framework electricity and allowance prices are explained as functions of specific fundamental factors, such as the demand for electricity and the prices of the fuels used for its production. As a result, the proposed model very clearly captures the complex dependency of the modelled prices on the aforementioned fundamental factors. The allowance price is obtained as the solution to a coupled forward-backward stochastic differential equation. We provide a rigorous proof of the existence and uniqueness of a solution to this equation and analyse its behaviour using asymptotic techniques. The essence of the model for the electricity price is a carefully chosen and explicitly constructed function representing the supply curve in the electricity market. The model we propose accommodates most regulatory features that are commonly found in implementations of emissions trading systems and we analyse in detail the impact these features have on the prices of allowance certificates. Thereby we reveal a weakness in existing regulatory frameworks, which, in rare cases, can lead to allowance prices that do not conform with the conditions imposed by the regulator. We illustrate the applicability of our model to the pricing of derivative contracts, in particular clean spread options and numerically illustrate its ability to "see" relationships between the fundamental variables and the option contract, which are usually unobserved by other commonly used models in the literature. The results we obtain constitute flexible tools that help to efficiently evaluate the financial impact current or future implementations of emissions trading systems have on participants in these markets.
|
23 |
Stochastické modely epidemií / Stochastic modelling of epidemicsDrašnar, Jan January 2016 (has links)
This thesis uses a simple deterministic model represented by an ordinary di- fferential equation with two equilibrium points - depending on the initial state the illness either vanishes or persists forever. This model is expanded by adding some diffusion coefficients leading to different stochastic differential equations. They are analyzed to show how the choice of diffusion coefficients changes be- havior of the model in proximity of its equilibria and near the boundary of area with biological meaning. The theoretical results are than illustrated by computer simulations. 1
|
24 |
[en] STUDY OF STOCHASTIC MIXING MODELS FOR COMBUSTION IN TURBULENT FLOWS / [pt] ESTUDO DE MODELOS DE MISTURA ESTOCÁSTICOS PARA A COMBUSTÃO EM ESCOAMENTOSTURBULENTOSELDER MARINO MENDOZA ORBEGOSO 11 December 2007 (has links)
[pt] O presente trabalho tem como finalidade avaliar os
diferentes modelos
de mistura para o cálculo da combustão de reagentes pré-
misturados utilizando a abordagem de Reator Parcialmente
Misturado (PaSR). Os modelos
de mistura considerados neste trabalho foram os modelos
IEM estendido,
Langevin e Langevin estendido. Investiga-se aqui o grau de
mistura previsto
por tais modelos e sua influência sobre as propriedades
termoquímicas em
um processo de combustão.
A primeira parte deste trabalho consiste na apresentação e
avaliação
destes modelos de mistura, considerando-se um campo
escalar inerte em
presença de um campo turbulento homogêneo e isotrópico.
Uma vez que
estes modelos de mistura envolvem formulações do tipo
estocástico, sua
implementação foi realizada utilizando o método de Monte
Carlo, mediante
a utilização de esquemas numéricos adequados à resolução
de equações
diferenciais estocásticas. Assim, estuda-se a evolução da
Função Densidade
de Probabilidade (PDF) e das principais propriedades do
campo escalar para
cada modelo implementado. Os resultados obtidos também são
comparados
com simulação numérica direta e com resultados analáticos
disponsáveis. Um
ótimo acordo em termos qualitativos e quantitativos é
obtido.
A segunda parte deste trabalho utiliza estes modelos para
o estudo
numérico de um PaSR no qual são modelados os processos
difusivos e reativos presentes durante a combustão. O PaSR
é usado para avaliar a influência
dos modelos de mistura nas propriedades termoquímicas da
mistura em uma
situação de combustão de tipo pré-misturada, que é
modelada utilizando-se
uma variável de progresso de uma reação. Os resultados
obtidos com os diferentes modelos de mistura são
comparados para diferentes regimes de funcionamento do
PaSR, mostrando que, em situações de mistura rápida e
reação
intensa, os diferentes modelos apresentam resultados
similares. Porém, nos
casos de mistura lenta e reação moderada, discrepancias
importantes são
observadas entre os resultados dos modelos; as quais
atingem até 65% para
o valor médio da variável de progresso da reação. / [en] The present work evaluates several mixing models for the
prediction
of premixed combustion in a Partially Stirred Reactor
(PaSR). The models
considered in this work were the extended IEM, Langevin
and extended
Langevin models. The degree of mixing and its influence on
the termochemical properties in a combustion process are
investigated here.
The first part of this work consists on the presentation
and the assesment of these mixing models in which a single
scalar field was considered in
presence of a homogeneous and isotropic turbulent field.
Since these mixing
models involve stochastic terms, their implementation is
performed by the
Monte Carlo method using numerical schemes which solve the
corresponding Stochastic Differential Equations (SDE). The
evolution of the Probability Density Function (PDF) and
the main properties for a single scalar
field are studied for each mixing model. The numerical
results are compared
with Direct Numerical Simulation and available analytical
results. Excellent
qualitative and quantitative agreements are obtained.
In the second part of this work, mixing models are used
for numerical
simulation of a PaSR where the diffusive and reactive
processes occur. The
PaSR is used to assess the mixing model influence on the
termochemical
properties of the mixture in a premixed combustion
process, which is
modeled using a reaction progress variable. The results
obtained with
the different mixing models are compared in several
operating regimes of
the PaSR, showing that when mixing is fast and reaction is
intense, the
different models lead to similar results. However, when
mixing is slow and
reaction is weak, important discrepancies are observed
between the model
results, which reach 65%, as far as the averaged reaction
progress variable
is concerned
|
25 |
Modelagem estocástica da dispersão axial: aplicação em um reator tubular de polimerização. / Stochastica modelling of the axial dispersion phenomena: application in a tubular polymerization reactor.Nakama, Caroline Satye Martins 17 February 2016 (has links)
Reatores tubulares de polimerização podem apresentar um perfil de velocidade bastante distorcido. Partindo desta observação, um modelo estocástico baseado no modelo de dispersão axial foi proposto para a representação matemática da fluidodinâmica de um reator tubular para produção de poliestireno. A equação diferencial foi obtida inserindo a aleatoriedade no parâmetro de dispersão, resultando na adição de um termo estocástico ao modelo capaz de simular as oscilações observadas experimentalmente. A equação diferencial estocástica foi discretizada e resolvida pelo método Euler-Maruyama de forma satisfatória. Uma função estimadora foi desenvolvida para a obtenção do parâmetro do termo estocástico e o parâmetro do termo determinístico foi calculado pelo método dos mínimos quadrados. Uma análise de convergência foi conduzida para determinar o número de elementos da discretização e o modelo foi validado através da comparação de trajetórias e de intervalos de confiança computacionais com dados experimentais. O resultado obtido foi satisfatório, o que auxilia na compreensão do comportamento fluidodinâmico complexo do reator estudado. / The velocity profile of polymerization tubular reactors may be very distorted. Based on this observation, a stochastic model based on the axial dispersion model was proposed for the mathematical representation of the fluid dynamics of a tubular reactor for polystyrene production. The differential equation was built by inserting randomness in the dipersion coefficient, which added a stochastic term to the model. This term was capable of simulating the experimentally observed fluctuations. The stochastic differential equation was discretized and solved by the Euler-Maruyama method adequately. An estimator function has been developed to calculate the parameter of the stochastic term, while the parameter of the deterministic term was estimated by a least squares method. A convergence analysis was carried out in order to determine the number of elements needed for the time discretization. The model was validated through comparisons of sample paths and computational confidence intervals with experimental data. The result was considered satisfactory, allowing a better understanding of the complex fluid dynamic behaviour of the analised reactor. Key-words: modelling, simulation, stochastic differential equation, polymerization tubular reactor, time residence distribution.
|
26 |
Some recent simulation techniques of diffusion bridgeSekerci, Yadigar January 2009 (has links)
We apply some recent numerical solutions to diffusion bridges written in Iacus (2008). One is an approximate scheme from Bladt and S{\o}rensen (2007), another one, from Beskos et al (2006), is an algorithm which is exact: no numerical error at given grid points!
|
27 |
Theory of light-matter interactions in cascade and diamond type atomic ensemblesJen, Hsiang-Hua 09 November 2010 (has links)
In this thesis, we investigate the quantum mechanical interaction of light with matter in the form of a gas of ultracold atoms: the atomic ensemble. We present a theoretical analysis of two problems, which involve the interaction of quantized electromagnetic fields (called signal and idler) with the atomic ensemble (i) cascade two-photon emission in an atomic ladder configuration, and (ii) photon frequency conversion in an atomic diamond configuration. The motivation of these studies comes from potential applications in long-distance quantum communication where it is desirable to generate quantum correlations between telecommunication wavelength light fields and ground level atomic coherences. In the two systems of interest, the light field produced in the upper arm of an atomic Rb level scheme is chosen to lie in the telecom window. The other field, resonant on a ground level transition, is in the near-infrared region of the spectrum. Telecom light is useful as it minimizes losses in the optical fiber transmission links of any two long-distance quantum communication device.
We develop a theory of correlated signal-idler pair correlation. The analysis is complicated by the possible generation of multiple excitations in the atomic ensemble. An analytical treatment is given in the limit of a single excitation assuming adiabatic laser excitations. The analysis predicts superradiant timescales in the idler emission in agreement with experimental observation. To relax the restriction of a single excitation, we develop a different theory of cascade emission, which is solved by numerical simulation of classical stochastic differential equation using the theory of open quantum systems. The simulations are in good qualitative agreement with the analytical theory of superradiant timescales. We further analyze the feasibility of this two-photn source to realize the DLCZ protocol of the quantum repeater communication system.
We provide a quantum theory of near-infrared to telecom wavelength conversion in the diamond configuration. The system provides a crucial part of a quantum-repeater memory element, which enables a "stored" near-infrared photon to be converted to a telecom wavelength for transmission without the destruction of light-atom quantum correlation. We calculate the theoretical conversion efficiency, analyzing the role of optical depth of the ensemble, pulse length, and quantum fluctuations on the process.
|
28 |
Some recent simulation techniques of diffusion bridgeSekerci, Yadigar January 2009 (has links)
<p>We apply some recent numerical solutions to diffusion bridges written in Iacus (2008). One is an approximate scheme from Bladt and S{\o}rensen (2007), another one, from Beskos et al (2006), is an algorithm which is exact: no numerical error at given grid points!</p>
|
29 |
Apie stochastinių diferencialinių lygčių sprendinių Hursto indekso vertinimą / On estimation of the Hurst index of solutions of stochastic differential equationsMelichov, Dmitrij 28 December 2011 (has links)
Pagrindinė šios disertacijos tema - stochastinių diferencialinių lygčių (SDL), valdomų trupmeninio Brauno judesio (tBj), sprendinių Hursto indekso H vertinimas. Pirmiausia disertacijoje išnagrinėta SDL, valdomų tBj, sprendinių pirmos ir antros eilės kvadratinių variacijų ribinė elgsena. Iš šių rezultatų seka keli stipriai pagrįsti Hursto indekso H įvertiniai. Įrodyta, kad šie įvertiniai išlieka stipriai pagrįsti, jei tikra sprendinio trajektorija keičiama jos Milšteino aproksimacija. Taip pat išnagrinėtos pokyčių santykio (increment ratios) statistikos H įvertinio, gauto J. M. Bardeto ir D. Surgailio 2010 m., taikymo trupmeninio geometrinio Brauno judesio Hursto indekso vertinimui galimybės bei nustatytas modifikuoto Gladyševo H įvertinio konvergavimo į tikrąją parametro reikšmę greitis. Gauti įvertiniai palyginti su kai kuriais kitais žinomais Hursto indekso H įvertiniais: naiviais bei mažiausių kvadratų Gladyševo ir eta-sumavimo osciliacijos įvertiniais, variogramos įvertiniu ir pokyčių santykio statistikos įvertiniu. Įvertiniu elgsena buvo palyginta trupmeniniam Ornšteino-Ulenbeko (OU) procesui bei trupmeniniam geometriniam Brauno judesiui (gBj). Pradinės išvados buvo padarytos O-U procesui, kuris yra Gauso, o gBj procesas buvo naudojamas patikrinti, kaip šie įvertiniai elgiasi, kai procesas yra ne Gauso. Disertaciją sudaro įvadas, 3 pagrindiniai skyriai, išvados, literatūros sąrašas, autoriaus publikacijų disertacijos tema sąrašas ir du priedai. / The main topic of this dissertation is the estimation of the Hurst index H of the solutions of stochastic differential equations (SDEs) driven by the fractional Brownian motion (fBm). Firstly, the limit behavior of the first and second order quadratic variations of the solutions of SDEs driven by the fBm is analyzed. This yields several strongly consistent estimators of the Hurst index H. Secondly, it is proved that in case the solution of the SDE is replaced by its Milstein approximation, the estimators remain strongly consistent. Additionally, the possibilities of applying the increment ratios (IR) statistic based estimator of H originally obtained by J. M. Bardet and D. Surgailis in 2010 to the fractional geometric Brownian motion are examined. Furthermore, this dissertation derives the convergence rate of the modified Gladyshev's estimator of the Hurst index to its real value. The estimators obtained in the dissertation were compared with several other known estimators of the Hurst index H, namely the naive and ordinary least squares Gladyshev and eta-summing oscillation estimators, the variogram estimator and the IR estimator. The models chosen for comparison of these estimators were the fractional Ornstein-Uhlenbeck (O-U) process and the fractional geometric Brownian motion (gBm). The initial inference about the behavior of these estimators was drawn for the O-U process which is Gaussian, while the gBm process was used to check how the estimators behave in a... [to full text]
|
30 |
On estimation of the Hurst index of solutions of stochastic differential equations / Apie stochastinių diferencialinių lygčių sprendinių Hursto indekso vertinimąMelichov, Dmitrij 28 December 2011 (has links)
The main topic of this dissertation is the estimation of the Hurst index H of the solutions of stochastic differential equations (SDEs) driven by the fractional Brownian motion (fBm).
Firstly, the limit behavior of the first and second order quadratic variations of the solutions of SDEs driven by the fBm is analyzed. This yields several strongly consistent estimators of the Hurst index H. Secondly, it is proved that in case the solution of the SDE is replaced by its Milstein approximation, the estimators remain strongly consistent. Additionally, the possibilities of applying the increment ratios (IR) statistic based estimator of H originally obtained by J. M. Bardet and D. Surgailis in 2010 to the fractional geometric Brownian motion are examined.
Furthermore, this dissertation derives the convergence rate of the modified Gladyshev’s estimator of the Hurst index to its real value.
The estimators obtained in the dissertation were compared with several other known estimators of the Hurst index H, namely the naive and ordinary least squares Gladyshev and eta-summing oscillation estimators, the variogram estimator and the IR estimator. The models chosen for comparison of these estimators were the fractional Ornstein-Uhlenbeck (O-U) process and the fractional geometric Brownian motion (gBm). The initial inference about the behavior of these estimators was drawn for the O-U process which is Gaussian, while the gBm process was used to check how the estimators behave in a... [to full text] / Pagrindinė šios disertacijos tema – stochastinių diferencialinių lygčių (SDL), valdomų trupmeninio Brauno judesio (tBj), sprendinių Hursto indekso H vertinimas. Pirmiausia disertacijoje išnagrinėta SDL, valdomų tBj, sprendinių pirmos ir antros eilės kvadratinių variacijų ribinė elgsena. Iš šių rezultatų seka keli stipriai pagrįsti Hursto indekso H įvertiniai. Įrodyta, kad šie įvertiniai išlieka stipriai pagrįsti, jei tikra sprendinio trajektorija keičiama jos Milšteino aproksimacija. Taip pat išnagrinėtos pokyčių santykio (increment ratios) statistikos H įvertinio, gauto J. M. Bardeto ir D. Surgailio 2010 m., taikymo trupmeninio geometrinio Brauno judesio Hursto indekso vertinimui galimybės bei nustatytas modifikuoto Gladyševo H įvertinio konvergavimo i tikrąją parametro reikšme greitis. Gauti įvertiniai palyginti su kai kuriais kitais žinomais Hursto indekso H įvertiniais: naiviais bei mažiausių kvadratų Gladyševo ir eta-sumavimo osciliacijos įvertiniais, variogramos įvertiniu ir pokyčių santykio statistikos įvertiniu. Įvertinių elgsena buvo palyginta trupmeniniam Ornšteino-Ulenbeko (OU) procesui bei trupmeniniam geometriniam Brauno judesiui (gBj). Pradinės išvados buvo padarytos O-U procesui, kuris yra Gauso, o gBj procesas buvo naudojamas patikrinti, kaip šie įvertiniai elgiasi, kai procesas yra ne Gauso. Disertaciją sudaro įvadas, 3 pagrindiniai skyriai, išvados, literatūros sąrašas, autoriaus publikacijų disertacijos tema sąrašas ir du priedai.
|
Page generated in 0.1111 seconds