• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 228
  • 123
  • 44
  • 38
  • 30
  • 29
  • 19
  • 13
  • 12
  • 7
  • 6
  • 5
  • 5
  • 4
  • 2
  • Tagged with
  • 579
  • 579
  • 133
  • 122
  • 112
  • 108
  • 89
  • 86
  • 81
  • 80
  • 72
  • 71
  • 68
  • 62
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Measuring Creativity in Academic Writing

Nagel, Janessa Helen Bower 12 1900 (has links)
The demand for a creative workforce has never been higher, yet schools struggle to teach and assess creativity among students predictably and efficiently. Compositions are an effective way to incorporate creativity across the curriculum; however, essays are time consuming for teachers to score for objective quality or subjective creativity. In this study, I explored a) if high creativity scores are related to high quality and sophistication in academic writing, and b) if extant text-mining tools effectively identify quality, sophistication, and creativity in academic essays. I collected 230 essays written by Grade 11 students. Four human-raters analyzed these essays for quality, sophistication, and creativity, and I used text-mining tools designed to assess creativity to analyze the same. Using correlations - including the variables semantic distance (measured against the GloVe corpus), entropy (measured with Shannon's Entropy Index), and idea density (measured with CPIDR5.1) - I assessed both human-raters' and text-mining tools' proficiency at identifying quality, sophistication, and creativity in academic essays. Quality, sophistication, and creativity were also regressed on these same text-mining variables to assess which method - human or computer – and which of the text-mining tools - best predicts these dependent variables. Human-raters' creativity scores correlated with human-raters' quality scores (r = .418) and sophistication scores (r = .321), as well as the text-mining tools MeanSim (r = -.131), OCS Originality (r = .359), Idea Density (r = .368), and Entropy (r = .388). These findings suggest text-mining tools designed for creativity can capture quality and sophistication of student essays. A comparison of human-raters' creativity scores and text-mining models revealed text-mining models can capture quality (R2 = .445) and sophistication (R2 = .373) better than human raters can capture quality (R2 = .175) and sophistication (R2 = .103).
112

Education Research Based on Information Seeking with Data Mining

Yang, Junhe 12 1900 (has links)
This dissertation aimed to expand new educational information using different data mining techniques. The first article is a survey of literature that analyzes how researchers use text mining in educational studies. This study examined 161 articles that described or employed text mining techniques for research. This study provides useful information for future research in text mining for educational contexts. The second article presents research conducted using sentiment and topic modeling analyses to explore whether technologies can be properly used in education. This study provides broad insights into educational technology and could help schools and teachers choose appropriate technologies for future education. The final article reports a study that examined the Twitter interactions on the #WomeninSTEM site to support women in STEM education. This final study generates new and diverse insights to sustain women pursuing STEM education, and it should help education researchers find new opportunities to encourage women to enter STEM majors.
113

Entwicklung eines generischen Vorgehensmodells für Text Mining

Schieber, Andreas, Hilbert, Andreas 29 April 2014 (has links) (PDF)
Vor dem Hintergrund des steigenden Interesses von computergestützter Textanalyse in Forschung und Praxis entwickelt dieser Beitrag auf Basis aktueller Literatur ein generisches Vorgehensmodell für Text-Mining-Prozesse. Das Ziel des Beitrags ist, die dabei anfallenden, umfangreichen Aktivitäten zu strukturieren und dadurch die Komplexität von Text-Mining-Vorhaben zu reduzieren. Das Forschungsziel stützt sich auf die Tatsache, dass im Rahmen einer im Vorfeld durchgeführten, systematischen Literatur-Review keine detaillierten, anwendungsneutralen Vorgehensmodelle für Text Mining identifiziert werden konnten. Aufbauend auf den Erkenntnissen der Literatur-Review enthält das resultierende Modell daher sowohl induktiv begründete Komponenten aus spezifischen Ansätzen als auch aus literaturbasierten Anforderungen deduktiv abgeleitete Bestandteile. Die Evaluation des Artefakts belegt die Nützlichkeit des Vorgehensmodells im Vergleich mit dem bisherigen Forschungsstand.
114

Idea Mining

Schieber, Andreas, Kruse, Paul 17 April 2014 (has links) (PDF)
Motiviert durch den Erfolg des Web 2.0 und Social Media in vielen Bereichen des öffentlichen Lebens und der damit verbundenen Open-Innovation-Bewegung, die Kunden aktiv in den Innovationsprozess einbezieht, schlägt dieser Beitrag eine Integration von Wissensmanagement und Text Mining zur Verbesserung dieses Innovationsprozesses vor. Durch den beschriebenen Ansatz werden Kunden nicht nur motiviert, ihre Ideen und Bedürfnisse auf webbasierten Kommunikationsplattformen preiszugeben, sondern die entstehenden, textbasierten Daten können automatisiert ausgewertet und zur zielgerichteten und zeitnahen Weiterentwicklung der Produkte eingesetzt werden. Anhand zweier Anwendungsszenarien aus der Praxis werden das resultierende Prozessmodell dargestellt und dessen Potenziale veranschaulicht.
115

Maladies rares et "Big Data" : solutions bioinformatiques vers une analyse guidée par les connaissances : applications aux ciliopathies / Rare diseases and big data : biocomputing solutions towards knowledge-guided analyses : applications to ciliopathies

Chennen, Kirsley 14 October 2016 (has links)
Au cours de la dernière décennie, la recherche biomédicale et la pratique médicale ont été révolutionné par l'ère post-génomique et l'émergence des « Big Data » en biologie. Il existe toutefois, le cas particulier des maladies rares caractérisées par la rareté, allant de l’effectif des patients jusqu'aux connaissances sur le domaine. Néanmoins, les maladies rares représentent un réel intérêt, car les connaissances fondamentales accumulées en temps que modèle d'études et les solutions thérapeutique qui en découlent peuvent également bénéficier à des maladies plus communes. Cette thèse porte sur le développement de nouvelles solutions bioinformatiques, intégrant des données Big Data et des approches guidées par la connaissance pour améliorer l'étude des maladies rares. En particulier, mon travail a permis (i) la création de PubAthena, un outil de criblage de la littérature pour la recommandation de nouvelles publications pertinentes, (ii) le développement d'un outil pour l'analyse de données exomique, VarScrut, qui combine des connaissance multiniveaux pour améliorer le taux de résolution. / Over the last decade, biomedical research and medical practice have been revolutionized by the post-genomic era and the emergence of Big Data in biology. The field of rare diseases, are characterized by scarcity from the patient to the domain knowledge. Nevertheless, rare diseases represent a real interest as the fundamental knowledge accumulated as well as the developed therapeutic solutions can also benefit to common underlying disorders. This thesis focuses on the development of new bioinformatics solutions, integrating Big Data and Big Data associated approaches to improve the study of rare diseases. In particular, my work resulted in (i) the creation of PubAthena, a tool for the recommendation of relevant literature updates, (ii) the development of a tool for the analysis of exome datasets, VarScrut, which combines multi-level knowledge to improve the resolution rate.
116

Idea Mining: Wissensmanagement und Text Mining im Innovationsprozess

Schieber, Andreas, Kruse, Paul 17 April 2014 (has links)
Motiviert durch den Erfolg des Web 2.0 und Social Media in vielen Bereichen des öffentlichen Lebens und der damit verbundenen Open-Innovation-Bewegung, die Kunden aktiv in den Innovationsprozess einbezieht, schlägt dieser Beitrag eine Integration von Wissensmanagement und Text Mining zur Verbesserung dieses Innovationsprozesses vor. Durch den beschriebenen Ansatz werden Kunden nicht nur motiviert, ihre Ideen und Bedürfnisse auf webbasierten Kommunikationsplattformen preiszugeben, sondern die entstehenden, textbasierten Daten können automatisiert ausgewertet und zur zielgerichteten und zeitnahen Weiterentwicklung der Produkte eingesetzt werden. Anhand zweier Anwendungsszenarien aus der Praxis werden das resultierende Prozessmodell dargestellt und dessen Potenziale veranschaulicht.:1 Einführung 1.1 Motivation 1.2 Forschungsziel 2 Beiträge im Forschungsfeld 3 Kundenorientierte Innovation 3.1 Der Innovationsprozess 3.2 Herausforderungen der Kundenintegration 4 Wissensmanagement 4.1 Anwendungspotenziale im Web 2.0 4.2 Anwendungspotenziale bei der Ideenfindung 5 Text Mining 5.1 Zielstellung und Datenquellen 5.2 Datenvorverarbeitung 5.3 Text-Mining-Verfahren und Anwendung 6 Der erweiterte Innovationsprozess 6.1 Integriertes Prozessmodell 6.2 Anwendungsszenarien 6.2.1 Dell’s IdeaStorm 6.2.2 My Starbucks Idea 7 Fazit und Ausblick Literaturverzeichnis
117

Release of the MySQL based implementation of the CTS protocol

Tiepmar, Jochen 20 April 2016 (has links) (PDF)
In a project called "A Library of a Billion Words" we needed an implementation of the CTS protocol that is capable of handling a text collection containing at least 1 billion words. Because the existing solutions did not work for this scale or were still in development I started an implementation of the CTS protocol using methods that MySQL provides. Last year we published a paper that introduced a prototype with the core functionalities without being compliant with the specifications of CTS (Tiepmar et al., 2013). The purpose of this paper is to describe and evaluate the MySQL based implementa-tion now that it is fulfilling the specifications version 5.0 rc.1 and mark it as finished and ready to use. Fur-ther information, online instances of CTS for all de-scribed datasets and binaries can be accessed via the projects website1. Reference Tiepmar J, Teichmann C, Heyer G, Berti M and Crane G. 2013. A new Implementation for Canonical Text Services. in Proceedings of the 8th Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities (LaTeCH).
118

Discovering relations between indirectly connected biomedical concepts

Tsatsaronis, George, Weissenborn, Dirk, Schroeder, Michael 04 January 2016 (has links) (PDF)
BACKGROUND: The complexity and scale of the knowledge in the biomedical domain has motivated research work towards mining heterogeneous data from both structured and unstructured knowledge bases. Towards this direction, it is necessary to combine facts in order to formulate hypotheses or draw conclusions about the domain concepts. This work addresses this problem by using indirect knowledge connecting two concepts in a knowledge graph to discover hidden relations between them. The graph represents concepts as vertices and relations as edges, stemming from structured (ontologies) and unstructured (textual) data. In this graph, path patterns, i.e. sequences of relations, are mined using distant supervision that potentially characterize a biomedical relation. RESULTS: It is possible to identify characteristic path patterns of biomedical relations from this representation using machine learning. For experimental evaluation two frequent biomedical relations, namely \"has target\", and \"may treat\", are chosen. Results suggest that relation discovery using indirect knowledge is possible, with an AUC that can reach up to 0.8, a result which is a great improvement compared to the random classification, and which shows that good predictions can be prioritized by following the suggested approach. CONCLUSIONS: Analysis of the results indicates that the models can successfully learn expressive path patterns for the examined relations. Furthermore, this work demonstrates that the constructed graph allows for the easy integration of heterogeneous information and discovery of indirect connections between biomedical concepts.
119

Status Quo der Textanalyse im Rahmen der Business Intelligence

Schieber, Andreas, Hilbert, Andreas 26 March 2014 (has links) (PDF)
Vor dem Hintergrund der Zunahme unstrukturierter Daten für Unternehmen befasst sich dieser Beitrag mit den Möglichkeiten, die durch den Einsatz der Business Intelligence für Unternehmen bestehen, wenn durch gezielte Analyse die Bedeutung dieser Daten erfasst, gefiltert und ausgewertet werden können. Allgemein ist das Ziel der Business Intelligence die Unterstützung von Entscheidungen, die im Unternehmen (auf Basis strukturierter Daten) getroffen werden. Die zusätzliche Auswertung von unstrukturierten Daten, d.h. unternehmensinternen Dokumenten oder Texten aus dem Web 2.0, führt zu einer Vergrößerung des Potenzials und dient der Erweiterung des Geschäftsverständnisses der Verbesserung der Entscheidungsfindung. Der Beitrag erläutert dabei nicht nur Konzepte und Verfahren, die diese Analysen ermöglichen, sondern zeigt auch Fallbeispiele zur Demonstration ihrer Nützlichkeit.
120

Graphdatenbanken für die textorientierten e-Humanities

Efer, Thomas 15 February 2017 (has links) (PDF)
Vor dem Hintergrund zahlreicher Digitalisierungsinitiativen befinden sich weite Teile der Geistes- und Sozialwissenschaften derzeit in einer Transition hin zur großflächigen Anwendung digitaler Methoden. Zwischen den Fachdisziplinen und der Informatik zeigen sich große Differenzen in der Methodik und bei der gemeinsamen Kommunikation. Diese durch interdisziplinäre Projektarbeit zu überbrücken, ist das zentrale Anliegen der sogenannten e-Humanities. Da Text der häufigste Untersuchungsgegenstand in diesem Feld ist, wurden bereits viele Verfahren des Text Mining auf Problemstellungen der Fächer angepasst und angewendet. Während sich langsam generelle Arbeitsabläufe und Best Practices etablieren, zeigt sich, dass generische Lösungen für spezifische Teilprobleme oftmals nicht geeignet sind. Um für diese Anwendungsfälle maßgeschneiderte digitale Werkzeuge erstellen zu können, ist eines der Kernprobleme die adäquate digitale Repräsentation von Text sowie seinen vielen Kontexten und Bezügen. In dieser Arbeit wird eine neue Form der Textrepräsentation vorgestellt, die auf Property-Graph-Datenbanken beruht – einer aktuellen Technologie für die Speicherung und Abfrage hochverknüpfter Daten. Darauf aufbauend wird das Textrecherchesystem „Kadmos“ vorgestellt, mit welchem nutzerdefinierte asynchrone Webservices erstellt werden können. Es bietet flexible Möglichkeiten zur Erweiterung des Datenmodells und der Programmfunktionalität und kann Textsammlungen mit mehreren hundert Millionen Wörtern auf einzelnen Rechnern und weitaus größere in Rechnerclustern speichern. Es wird gezeigt, wie verschiedene Text-Mining-Verfahren über diese Graphrepräsentation realisiert und an sie angepasst werden können. Die feine Granularität der Zugriffsebene erlaubt die Erstellung passender Werkzeuge für spezifische fachwissenschaftliche Anwendungen. Zusätzlich wird demonstriert, wie die graphbasierte Modellierung auch über die rein textorientierte Forschung hinaus gewinnbringend eingesetzt werden kann. / In light of the recent massive digitization efforts, most of the humanities disciplines are currently undergoing a fundamental transition towards the widespread application of digital methods. In between those traditional scholarly fields and computer science exists a methodological and communicational gap, that the so-called \\\"e-Humanities\\\" aim to bridge systematically, via interdisciplinary project work. With text being the most common object of study in this field, many approaches from the area of Text Mining have been adapted to problems of the disciplines. While common workflows and best practices slowly emerge, it is evident that generic solutions are no ultimate fit for many specific application scenarios. To be able to create custom-tailored digital tools, one of the central issues is to digitally represent the text, as well as its many contexts and related objects of interest in an adequate manner. This thesis introduces a novel form of text representation that is based on Property Graph databases – an emerging technology that is used to store and query highly interconnected data sets. Based on this modeling paradigm, a new text research system called \\\"Kadmos\\\" is introduced. It provides user-definable asynchronous web services and is built to allow for a flexible extension of the data model and system functionality within a prototype-driven development process. With Kadmos it is possible to easily scale up to text collections containing hundreds of millions of words on a single device and even further when using a machine cluster. It is shown how various methods of Text Mining can be implemented with and adapted for the graph representation at a very fine granularity level, allowing the creation of fitting digital tools for different aspects of scholarly work. In extended usage scenarios it is demonstrated how the graph-based modeling of domain data can be beneficial even in research scenarios that go beyond a purely text-based study.

Page generated in 0.0294 seconds