• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 140
  • 32
  • 30
  • 28
  • 19
  • 8
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 322
  • 322
  • 167
  • 132
  • 108
  • 106
  • 67
  • 62
  • 61
  • 45
  • 45
  • 34
  • 31
  • 30
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Optimalizace návrhu tepelného výměníku využívající materiál se změnou fáze pro akumulaci tepla / Design optimization of a heat exchanger with a phase change material for thermal energy storage

Hliník, Juraj January 2017 (has links)
Práce je zaměřena na sestavení numerického modelu akumulace tepelné energie s fázovou přeměnou. Následně je tento model použit při tvarové optimalizaci, jejíž cílem je maximalizace uloženého tepla v tepelném výměníku. Kvůli komplexitě objektové funkce byl zvolen genetický algoritmus pro řešní úloh tvarové optimalizace. Práce obsahuje analýzu dvou problému týkající se tvarové optimalizace s následnou diskuzí nad obdrženými výsledky. Celý problém byl implementován v softwaru Matlab.
172

Analysis and Optimisation of a Receiver Tube for Direct Steam Generation in a Solar Parabolic Trough Collector

Nolte, Henriette C. January 2014 (has links)
This study focused on a numerical second law analysis and optimisation of a receiver tube op- erating in a parabolic trough solar collector for small-scale application. The receiver functioned in a Rankine cycle. The focus was on entropy generation minimisation in the receiver due to the high quality exergy losses in this component. Water functioned as the working uid and was heated from ambient conditions (liquid) to a superheated state (vapour), consequently, the receiver tube was subject to both single phase as well as two-phase ow. Entropy generation in the receiver tube was mainly due to nite temperature di erences as well as uid friction. The contribution of each of these components was investigated. Geometrical as well as operating conditions were investigated to obtain good guidelines for receiver tube and plant design. An operating pressure in the range of 1 MPa (Tsat = 180 C) to 10 MPa (Tsat = 311 C) was considered. Furthermore a mass ow range of 0:15 kg=s to 0:4 kg=s was investigated. Results showed that beyond a diameter of 20 mm, the main contributor to the entropy generation was the nite temperature di erences for most conditions. Generally, operating pressures below 3 MPa showed bad performance since the uid friction component was too large for small operating pressures. This phenomenon was due to long two-phase lengths and high pressure drops in this region. The nite temperature di erence component increased linearly when the tube diameter was increased (due to the increase in exposed area) if the focused heat ux was kept constant. However, the uid friction component increased quadratically when the diameter was reduced. In general when the concentration ratio was increased, the entropy generation was decreased. This was due to more focused heat on each section of the receiver pipe and, in general, resulted in shorter receiver lengths. Unfortunately, there is a limit to the highest concentration ratio that can be achieved and in this study, it was assumed to be 45 for two-dimensional trough technology. A Simulated Annealing (SA) optimisation algorithm was implemented to obtain certain optimum parameters. The optimisation showed that increasing the diameter could result in a decrease in entropy generation, provided that the concentration ratio is kept constant. However, beyond a certain point gains in minimising the entropy generation became negligible. Optimal operating pressure would generally increase if the mass ow rate was increased. Finally, it was seen that the highest operating pressure under consideration (10 MPa) showed the best performance when considering the minimisation of entropy in conjunction with the maximisation of the thermodynamic work output. / Dissertation (MEng)--University of Pretoria, 2014. / tm2015 / Mechanical and Aeronautical Engineering / MEng / Unrestricted
173

REDUCED-ORDER MODELING AND DESIGN OPTIMIZATION OF METAL-PCM COMPOSITE HEAT EXCHANGERS

Karan Nitinkumar Gohil (8810666) 07 May 2020 (has links)
Thermal energy storage (TES) modules are specifically designed to respond to transient thermal loading. Their dynamic response depends on the overall structure of the module, including module geometry and dimensions, the internal spatial distribution of phase change material (PCM) and conductive heat-spreading elements, and the thermophysical properties of the different materials composing the module. However, due to the complexity of analyzing a system’s dynamic thermal response to transient input signals, optimal design of a TES module for a particular application is challenging. Conventional design approaches are limited by (1) the computational cost associated with high fidelity simulation of heat transfer in nonlinear systems undergoing a phase transition and (2) the lack of model integration with robust optimization tools. To overcome these challenges, I derive reduced-order dynamic models of two different metal-PCM composite TES modules and validate them against a high fidelity CFD model. Through simulation and validation of both turbulent and laminar flow cases, I demonstrate the accuracy of the reduced-order models in predicting, both spatially and temporally, the evolution of the dynamic model states and other system variables of interest, such as PCM melt fraction. The validated models are used to conduct univariate and bivariate parametric studies to understand the effects of various design parameters on different performance metrics. Finally, a case study is presented in which the models are used to conduct detailed design optimization for the two HX geometries.
174

Comparison of different Line Source Model approaches for analysis of Thermal Response Test in a U-pipe Borehole heat Exchanger.

Monzó, Patricia January 2011 (has links)
Ground Source Heat Pumps (GHSPs) is a relevant application and around 3 million installations are setting up at the beginning of 2010 (IEA ECES Annex 21). The improvements in GSHPs are currently focused on the optimization of the system and the reduction of costs installations. The thermal conductivity of the ground and thermal resistance of the Borehole Heat Exchanger (BHE) are important design parameters for Borehole Thermal Energy Storage (BTES) systems. The Thermal Response Test (TRT), which has been used up to now in the GHE design, only allows estimating mean values for thermal conductivity of the surrounding ground and borehole resistance. However, the ground thermal conductivity and borehole thermal resistance may present local variation along the borehole depth. For improving conventional TRT, the optical fiber technology is applied to collect information about the temperature profiles in the borehole. Thermal Response Test (TRT) logs the inlet and outlet fluid temperatures; meanwhile, the Distributed Thermal Response Test (DTRT) carries out a profile of the temperature along the borehole depth, in this case with fiber optic cables. This Master of Science Thesis focuses on the comparison and analysis of DTRT measurements in a U-pipe borehole in order to estimate the thermal conductivity and the borehole thermal resistance along the borehole. The comparison and the analysis are carried out by: •Comparing the differences of TRT results depending on the heat power rate considered – constant and by steps-. •Comparing the results from two different resolution Distributed Test Sensing (DTS) equipments: Halo and Sentinel DTS. •Comparing the differences of TRT results as depending on the analytical procedure based on the line source theory: line source model and line source approximation.
175

Thermocline storage for concentrated solar power : Techno-economic performance evaluation of a multi-layered single tank storage for Solar Tower Power Plant

Ferruzza, Davide January 2015 (has links)
Solar Tower Power Plants with thermal energy storage are a promising technology for dispatchable renewable energy in the near future. Storage integration makes possible to shift the electricity production to more profitable peak hours. Usually two tanks are used to store cold and hot fluids, but this means both higher related investment costs and difficulties during the operation of the variable volume tanks. Another solution can be a single tank thermocline storage in a multi-layered configuration. In such tank both latent and sensible fillers are employed to decrease the related cost by up to 30% and maintain high efficiencies.  The Master thesis hereby presented describes the modelling and implementation of a thermocline-like multi-layered single tank storage in a STPP. The research work presents a comprehensive methodology to determine under which market structures such devices can outperform the more conventional two tank storage systems. As a first step the single tank is modelled by means of differential energy conservation equations. Secondly the tank geometrical design parameters and materials are taken accordingly with the applications taken into consideration. Both the steady state and dynamic models have been implemented in an existing techno-economic tool developed in KTH, in the CSP division (DYESOPT). The results show that under current cost estimates and technical limitations the multi-layered solid PCM storage concept is a better solution when peaking operating strategies are desired, as it is the case for the two-tier South African tariff scheme. In this case the IRR of an optimal designed power plant can be decreased by 2.1%. However, if a continuous operation is considered, the technology is not always preferred over the two tank solution, yet is a cheaper alternative with optimized power plants. As a result the obtained LCOE can be decreased by 2.4%.
176

Waste heat recovery systems : Fuel energy utilisation for a marine defence platform

Gustafsson, Filip January 2020 (has links)
This report is a thesis for BTH in collaboration with the company Saab Kockums AB. In order to meet future environmental and economical demands, a vessel must reduce its fuel consumption to have a smaller climate impact and save money. Waste heat recovery systems (WHRS) captures the thermal energy generated from a process that is not used but dumped into the environment and transfers it back to the system. Thermal energy storage (TES) is the method of storing thermal energy which allows heat to be used whenever necessary. Some applications of TES are seasonal storage, where summer heat is stored for use in the winter or when ice is produced during off-peak periods and used for cooling later. The purpose of this study is to investigate the possibilities of utilising a vessel’s waste heat by converting thermal energy into electrical energy. This thesis also aims to investigate conditions for SaltX Technology’s nano-coated salt as a potential solution for thermal energy storage. Initially, the expectations and requirements a future WHRS were investigated in a function analysis. Continuously, the method consisted of a combination of a literature review and dialogue with stakeholders. The literature review was used as a tool to identify, select and study concepts of interest built on scientifically proven facts. Dialogues with stake holders were held as a complement to the literature study to find information. The study showed that an organic Rankine cycle has the highest efficiency for low-medium temperature heat and is therefore most suitable to recover thermal energy from the cooling water. The concept of a steam Rankine cycle is most suitable for recovering thermal energy from the exhaust gases for direct use.The study obtained conditions and important properties for storing thermal energy in salt for later use. Finally, the result showed that a Stirling engine is the most efficient concept for conversion of stored energy into electrical energy. The conclusions are that there are great possibilities for waste heat recovery on marine defence platforms. A Stirling engine for energy conversion in combinations with thermal energy storage shows most promise as a future waste heat recovery system on this type of marine platform. / Denna rapport är ett examensarbete för BTH i samarbete med företaget Saab Kockums AB. Arbetet utforskar möjligheterna att möta framtida miljömässiga och ekonomiska krav genom att låta fartyg minska sin bränsleförbrukning. System för återvinning av spillvärme (WHRS) fångar upp värmeenergi som vanligtvis kyls ner eller släpps ut i naturen och för den tillbaka till systemet. Termisk energilagring (TES) är metoder för lagring av värme som gör det möjligt att använda termisk energi när det behövs. Vissa applikationer av TES är säsongslagring, där sommarvärme lagras för användning på vintern eller när is produceras under vintern och används för kylning senare. Syftet med denna studie är att undersöka möjligheterna att utnyttja ett fartygs spillvärme genom att omvandla termisk energi till elektrisk energi. Detta examensarbete syftar också till att undersöka förhållandena för hur SaltX Technology’s nanobelagda salt kan användas som en potentiell lösning för lagring av termisk energi. Inledningsvis undersöktes WHRS:s förväntningar och krav i en funktionsanalys. Fortsättningsvis bestod metoden av en kombination av en litteraturstudie och dialoger med intressenter. Litteraturstudien användes som ett verktyg för att identifiera, välja och studera intressanta koncept baserade på vetenskapligt beprövade fakta. Dialoger hölls som ett komplement till litteraturstudien för att hitta information. Studien visade att en organisk Rankine-cykel har den högsta verkningsgraden för låg-medelhög temperatur och därför är bäst lämpad för att återvinna energi buren i kylvattnet samt att en ång-Rankine-cykel är bäst lämpad för att utnyttja energin från avgaserna för direkt användning. Studien erhöll förhållanden för termisk energilagring i salt samt viktiga parametrar för systemet. Slutligen visade resultatet att en Stirlingmotor är det mest effektiva konceptet för omvandling av lagrad energi till elektrisk energi. Slutsatserna är att det finns stora möjligheter för återvinning av restvärme på marina försvarsplattformar. En Stirlingmotor för energiomvandling i kombination med termisk energilagring visar störst potential som ett framtida system för återvinning av spillvärme på denna typen av plattformar.
177

Investigations on Latent Thermal Energy Storage for Concentrating Solar Power

Nithyanandam, Karthik 10 June 2013 (has links)
Thermal energy storage (TES) in a concentrating solar power (CSP) plant allows for continuous operation even during times when solar radiation is not available, thus providing a reliable output to the grid. Energy can be stored either as sensible heat or latent heat, of which latent heat storage is advantageous due to its high volumetric energy density and the high Rankine cycle efficiency owing to the isothermal operation of latent thermal energy storage (LTES) system. Storing heat in the form of latent heat of fusion of a phase change material (PCM), in addition to sensible heat, significantly increases the energy density, thus potentially reducing the storage size and cost. However, a major technical barrier to the use of latent thermal energy of PCM is the high thermal resistance to energy transfer due to the intrinsically low thermal conductivity of PCMs, which is a particularly acute constraint during the energy discharge. Secondly, for integration of TES in CSP plants, it is imperative that the cyclic exergetic efficiency be high, among other requirements, to ensure that the energy extracted from the system is at the maximum possible temperature to achieve higher cycle conversion efficiency in the power block. The first objective is addressed through computational modeling and simulation to quantify the effectiveness of two different approaches to reduce the thermal resistance of PCM in a LTES, viz. (a) developing innovative, inexpensive and passive heat transfer devices that efficiently transfer large amount of energy between the PCM and heat transfer fluid (HTF) and (b) increase the heat transfer area of interaction between the HTF and PCM by incorporating the PCM mixture in small capsules using suitable encapsulation techniques.   The second portion of the research focuses on numerical modeling of large scale latent thermal storage systems integrated to a CSP plant with the aforementioned enhancement techniques and cascaded with more than one PCM to maximize the exergetic efficiency. Based on systematic parametric analysis on the various performance metrics of the two types of LTES, feasible operating regimes and design parameters are identified to meet the U.S. Department of Energy SunShot Initiative requirements including storage cost < $15/kWht and exergetic efficiency > 95%, for a minimum storage capacity of 14 h, in order to reduce subsidy-free levelized cost of electricity (LCE) of CSP plants from 21¢/kWh (2010 baseline) to 6¢/kWh, to be on par with the LCE associated with fossil fuel plants. / Ph. D.
178

Design and Development of Solar Thermal Propulsion SystemWith PCM as Thermal Energy Storage Medium

Vommina, Naga Sree Sumanvitha 07 August 2023 (has links)
No description available.
179

Parametric Study of a Thermal Energy Storage Module Coupled with a Heat Exchanger

Kulkarni, Rituja 04 October 2021 (has links)
No description available.
180

HEAT CONSUMPTION OPTIMIZATION IN 4TH GENERATION DISTRICT HEATING : Study on utilizing low temperature heat sources and heat stored in a house by varying indoor temperature

Karlsson, Simon, Farman, Farman January 2023 (has links)
4th generation district heating (4GDH) and varying the indoor temperature to store heat are both important concepts that can make it easier to implement more renewable energy and reduce costs of heating. This study looks at these concepts from a customer perspective using one building and looking at how energy can be stored and the performance of 4GDH. Low temperature heat sources from industry, supermarkets, and datacentres are used in combination with heat from a combined heat and power plant to get the required heating. A heat pump has also been modelled as a part of the 4GDH structure. In addition to looking at heat storage in 4GDH a scenario with direct electric heating has also been evaluated. In conclusion 4GDH has lower operating costs than 3rd generation district heating, but it is not worth varying the indoor temperature to store energy when using 4GDH. It is, however, profitable to vary indoor temperature if direct electric heating is used.

Page generated in 0.0313 seconds