• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 18
  • 10
  • 8
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 147
  • 147
  • 147
  • 66
  • 60
  • 41
  • 41
  • 35
  • 34
  • 22
  • 21
  • 21
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Multifunctional polymer composites for thermal energy storage and thermal management

Fredi, Giulia 05 June 2020 (has links)
Thermal energy storage (TES) consists in storing heat for a later use, thereby reducing the gap between energy availability and demand. The most diffused materials for TES are the organic solid-liquid phase change materials (PCMs), such as paraffin waxes, which accumulate and release a high amount of latent heat through a solid-liquid phase change, at a nearly constant temperature. To avoid leakage and loss of material, PCMs are either encapsulated in inert shells or shape-stabilized with porous materials or a nanofiller network. Generally, TES systems are only a supplementary component added to the main structure of a device, but this could unacceptably rise weight and volume of the device itself. In the applications where weight saving and thermal management are both important (e.g. automotive, portable electronics), it would be beneficial to embed the heat storage/management in the structural components. The aim of this thesis is to develop polymer composites that combine a polymer matrix, a PCM and a reinforcing agent, to reach a good balance of mechanical and TES properties. Since this research topic lacks a systematic investigation in the scientific literature, a wide range of polymer/PCM/reinforcement combinations were studied in this thesis, to highlight the effect of PCM introduction in a broad range of matrix/reinforcement combinations and to identify the best candidates and the key properties and parameters, in order to set guidelines for the design of these materials. The thesis in divided in eight Chapters. Chapter I and II provide the introduction and the theoretical background, while Chapter III details the experimental techniques applied on the prepared composites. The results and discussion are then described in Chapters IV-VII. Chapter IV presents the results of PCM-containing composites having a thermoplastic matrix. First, polyamide 12 (PA12) was melt-compounded with either a microencapsulated paraffin (MC) or a paraffin powder shape-stabilized with carbon nanotubes (ParCNT), and these mixtures were used as matrices to produce thermoplastic laminates with a glass fiber fabric via hot-pressing. MC was proven more suitable to be combined with PA12 than ParCNT, due to the higher thermal resistance. However, also the MC were considerably damaged by melt compounding and the two hot-pressing steps, which caused paraffin leakage and degradation, as demonstrated by the relative enthalpy lower than 100 %. Additionally, the PCM introduction decreased the mechanical properties of PA12 and the tensile strength of the laminates, but for the laminates containing MC the elastic modulus and the strain at break were not negatively affected by the PCM. Higher TES properties were achieved with the production of a semi-structural composite that combined PA12, MC and discontinuous carbon fibers. For example, the composite with 50 wt% of MC and 20 wt% of milled carbon fibers exhibited a total melting enthalpy of 60.4 J/g and an increase in elastic modulus of 42 % compared to the neat PA. However, the high melt viscosity and shear stresses developed during processing were still responsible for a not negligible PCM degradation, as also evidenced by dynamic rheological tests. Further increases in the mechanical and TES properties were achieved by using a reactive thermoplastic matrix, which could be processed as a thermosetting polymer and required considerably milder processing conditions that did not cause PCM degradation. MC was combined with an acrylic thermoplastic resin and the mixtures were used as matrices to produce laminates with a bidirectional carbon fabric, and for these laminates the melting enthalpy increased with the PCM weight fraction and reached 66.8 J/g. On the other hand, the increased PCM fraction caused a rise in the matrix viscosity and so a decrease in the fiber volume fraction in the final composite, thereby reducing the elastic modulus and flexural strength. Dynamic-mechanical investigation evidenced the PCM melting as a decreasing step in ’; its amplitude showed a linear trend with the melting enthalpy, and it was almost completely recovered during cooling, as evidenced by cyclic DMA tests. Chapter V presents the results of PCM-containing thermosetting composites. A further comparison between MC and ParCNT was performed in a thermosetting epoxy matrix. First, ParCNT was mixed with epoxy and the mixtures were used as matrices to produce laminates with a bidirectional carbon fiber fabric. ParCNT kept its thermal properties also in the laminates, and the melting enthalpy was 80-90 % of the expected enthalpy. Therefore, ParCNT performed better in thermosetting than in thermoplastic matrices due to the milder processing conditions, but the surrounding matrix still partially hindered the melting-crystallization process. Therefore, epoxy was combined with MC, but the not optimal adhesion between the matrix and the MC shell caused a considerable decrease in mechanical strength, as also demonstrated by the fitting with the Nicolais-Narkis and Pukanszky models, both of which evidenced scarce adhesion and considerable interphase weakness. However, the Halpin-Tsai and Lewis-Nielsen models of the elastic modulus evidenced that at low deformations the interfacial interaction is good, and this also agrees with the data of thermal conductivity, which resulted in excellent agreement with the Pal model calculated considering no gaps at the interface. These epoxy/MC mixtures were then reinforced with either continuous or discontinuous carbon fibers, and their characterization confirmed that the processing conditions of an epoxy composite are mild enough to preserve the integrity of the microcapsules and their TES capability. For continuous fiber composites, the increase in the MC fraction impaired the mechanical properties mostly because of the decrease in the final fiber volume fraction and because the MC phase tends to concentrate in the interlaminar region, thereby lowering the interlaminar shear strength. On the other hand, a small amount of MC enhanced the mode I interlaminar fracture toughness (Gic increases of up to 48 % compared to the neat epoxy/carbon laminate), as the MC introduced other energy dissipation mechanisms such as the debonding, crack deflection, crack pinning and micro-cracking, which added up to the fiber bridging. Chapter VI introduces a fully biodegradable TES composite with a thermoplastic starch matrix, reinforced with thin wood laminae and containing poly(ethylene glycol) as the PCM. The wood laminae successfully acted as a multifunctional reinforcement as they also stabilized PEG in their inner pores (up to 11 wt% of the whole laminate) and prevent its leakage. Moreover PEG was proven to increase the stiffness and strength of the laminate, thereby making the mechanical and TES properties synergistic and not parasitic. Finally, Chapter VII focused on PCM microcapsules. The synthesis of micro- and nano-capsules with an organosilica shell via a sol-gel approach clarified that the confinement in small domains and the interaction with the shell wall modified the crystallization behavior of the encapsulated PCM, as also evidenced by NMR and XRD studies and confirmed by DSC results. In the second part of Chapter VII, a coating of polydpamine (PDA) deposited onto the commercial microcapsules MC. The resulting PDA coating was proven effective to enhance the interfacial adhesion with an epoxy matrix, as evidenced by SEM micrographs. XPS demonstrated that the PDA layer was able to react with oxirane groups, thereby evidencing the possibility of forming covalent bond with the epoxy matrix during the curing step.
52

Novel System Design For Residential Heating And Cooling Load Shift Using PCM Filled Plate Heat Exchanger And Auxiliaries For Economic Benefit And Demand Side Management

Yaser, Hussnain A. 27 October 2014 (has links)
No description available.
53

HEAT TRANSFER AUGMENTATION FOR EXTERNAL ICE-ON-TUBE TES SYSTEMS USING POROUS COPPER MESH TO INCREASE VOLUMETRIC ICE PRODUCTION

NIRMALANANDHAN, VICTOR SANJIT January 2004 (has links)
No description available.
54

Azelio’s Thermal Battery for Combined Heat and Power : A Thermo-economic and Market Research Study

Lantz, Martin January 2020 (has links)
The objective of this thesis was to assess the market opportunities for two novel Carnot battery system solutions, one supplying power and low temperature heat as well as a system supplying medium temperature heat exclusively. To fulfill the objective, a methodology was developed and implemented to investigate the market potential, further two techno-economic models were developed and utilized to investigate the performance of such Carnot battery solutions. Based on the market review four industrial sectors were identified as most interesting and the geographical scope was confined to Europe. Further, case studies were developed to mimic two different sizes of manufacturing plants, a small and large, for the identified sectors. The cases were then implemented to the techno-economic analysis to compare the performance of a new Carnot battery system against the conventional energy solutions. The identified market offers a vast opportunity for incorporating Carnot battery solutions to meet the industrial sectors requirements, both from a technical and market size perspective. The market review combined with the techno-economic analysis indicates that the heat market is interesting as long as fuel, power grid costs and industrial operations are at the ideal level. For the Carnot battery system supplying both power and heat, it was found that yearly cost savings in the range of 10-15 % could be achieved for the identified market. The added value of incorporating heat generation and surplus power from PV had a strong effect on the business case. Through sensitivity analysis it was approximated that locations in central/south Europe with global horizontal irradiance (GHI) above 1500 kWh/m2 would benefit from the solution. For the Carnot battery system supplying medium temperature heat it was found that solutions would struggle with feasibility for the given market conditions. Through sensitivity it was found that locations with GHI higher than 2100 kWh/m2 would benefit from the solution. For both models it was found that the hybrid solution, Carnot battery combined with on-site PV, yields the most feasible solution for the end user, compared to charging the Carnot storage system from the power grid. Both models were sensitives to changes in energy cost for operating the old conventional system as well as operations times of the industries. The availability of space is a major constraint to implement Carnot battery solutions, as both the Carnot battery as well as PV plant require substantial space. It was found through literature and interviews that industries with close proximity to end customer and which faces pressure to decarbonize, may be most interesting to target, as for e.g. the Food and beverage sector. / Syftet med denna uppsats var att undersöka marknadspotentialen för två stycken Carnot batterisystem, ett system som generar både el och låg tempererad värme och ett som endast generar medel tempererad värme. För att uppnå målet så utvecklades och implementerades en metod för att undersöka marknadspotentialen, vidare så utvecklades och användes två tekno-ekonomiska modeller för att undersöka prestandan för de två Carnot lösningarna. Baserat på marknadsundersökningen så identifierades fyra industriella sektorer som mest intressanta och baserat på dem begränsades omfattningen av studien till Europa. Från marknadsgenomsökningen och de identifierade industriella sektorerna skapades två olika profiler för att representera en liten och stor industri för de identifierade sektorerna. Profilerna användes som utgångspunkt för den tekno-ekonomiska analysen för att jämföra prestandan hos ett nytt Carnot batterisystem mot konventionella energilösningar. Den identifierade marknaden erbjuder en stor möjlighet för att integrera Carnot batterilösningar för att möta industrisektorns krav, både ur ett tekniskt perspektiv och med tanke på marknadensstorleken. Marknadsundersökningen kombinerat med tekno-ekonomiskanalysen indikerar att värmemarknaden för industrier är intressant så länge bränsle- och elkostnader samt drifttiden är i rättnivå. Resultat från analysen tyder på att Carnot batterilösningar, som generar både el och värme, kan skapa energikostnadsbesparingar runt 10–15 % för den identifierade marknaden. Värdet av att addera kassaflöden från överskotts el från solcellerna samt värmegenerering har en stark påverkan på resultaten. Från en känslighetsanalys gick det att identifiera centrala/södra Europa som platser med tillräcklig solinstrålning (runt 1500 kWh/m2) för att dra nytta av ett Carnot batteri. För Carnot batterisystemet som endast producerar medel tempererad värme så skapas inga energikostandsbesparingar för slutanvändaren för den analyserade marknadsförutsättningarna. Genom en känslighetsanalys gick det att fastställa att hög solinstrålning krävs (över 2100 kWh/m2) för att slutanvändaren ska skapa några besparingar med systemet. För båda modellerna generade en hybridsystemlösning med både Carnot batteri samt lokal solcellsanläggning de bästa resultaten, jämfört med om systemet skulle laddas från elnätet. Båda modellerna är känsliga mot förändringar i energikostnader, värme eller el, för det konventionella systemet samt lägre drifttid. Vidare så är tillgänglig yta en annan restriktion som både kan hindra implementeringen av Carnot batteriet samt också solcellsanläggningen. Både litteraturstudien och de genomförda intervjuerna tyder på att industrier som har nära kontakt med slutkonsumenten och som har krav på att reducera sin miljöpåverkan, är en intressant användare av ett Carnot batterilösning, som exempelvis livsmedelsindustrin.
55

NUMERICAL AND EXPERIMENTAL ANALYSIS OF HEAT PIPES WITH APPLICATION IN CONCENTRATED SOLAR POWER SYSTEMS

Mahdavi, Mahboobe January 2016 (has links)
Thermal energy storage systems as an integral part of concentrated solar power plants improve the performance of the system by mitigating the mismatch between the energy supply and the energy demand. Using a phase change material (PCM) to store energy increases the energy density, hence, reduces the size and cost of the system. However, the performance is limited by the low thermal conductivity of the PCM, which decreases the heat transfer rate between the heat source and PCM, which therefore prolongs the melting, or solidification process, and results in overheating the interface wall. To address this issue, heat pipes are embedded in the PCM to enhance the heat transfer from the receiver to the PCM, and from the PCM to the heat sink during charging and discharging processes, respectively. In the current study, the thermal-fluid phenomenon inside a heat pipe was investigated. The heat pipe network is specifically configured to be implemented in a thermal energy storage unit for a concentrated solar power system. The configuration allows for simultaneous power generation and energy storage for later use. The network is composed of a main heat pipe and an array of secondary heat pipes. The primary heat pipe has a disk-shaped evaporator and a disk-shaped condenser, which are connected via an adiabatic section. The secondary heat pipes are attached to the condenser of the primary heat pipe and they are surrounded by PCM. The other side of the condenser is connected to a heat engine and serves as its heat acceptor. The applied thermal energy to the disk-shaped evaporator changes the phase of working fluid in the wick structure from liquid to vapor. The vapor pressure drives it through the adiabatic section to the condenser where the vapor condenses and releases its heat to a heat engine. It should be noted that the condensed working fluid is returned to the evaporator by the capillary forces of the wick. The extra heat is then delivered to the phase change material through the secondary heat pipes. During the discharging process, secondary heat pipes serve as evaporators and transfer the stored energy to the heat engine. Due to the different geometry of the heat pipe network, a new numerical procedure was developed. The model is axisymmetric and accounts for the compressible vapor flow in the vapor chamber as well as heat conduction in the wall and wick regions. Because of the large expansion ratio from the adiabatic section to the primary condenser, the vapor flow leaving the adiabatic pipe section of the primary heat pipe to the disk-shaped condenser behaves similarly to a confined jet impingement. Therefore, the condensation is not uniform over the main condenser. The feature that makes the numerical procedure distinguished from other available techniques is its ability to simulate non-uniform condensation of the working fluid in the condenser section. The vapor jet impingement on the condenser surface along with condensation is modeled by attaching a porous layer adjacent to the condenser wall. This porous layer acts as a wall, lets the vapor flow to impinge on it, and spread out radially while it allows mass transfer through it. The heat rejection via the vapor condensation is estimated from the mass flux by energy balance at the vapor-liquid interface. This method of simulating heat pipe is proposed and developed in the current work for the first time. Laboratory cylindrical and complex heat pipes and an experimental test rig were designed and fabricated. The measured data from cylindrical heat pipe were used to evaluate the accuracy of the numerical results. The effects of the operating conditions of the heat pipe, heat input, and portion of heat transferred to the phase change material, main condenser geometry, primary heat pipe adiabatic radius and its location as well as secondary heat pipe configurations have been investigated on heat pipe performance. The results showed that in the case with a tubular adiabatic section in the center, the complex interaction of convective and viscous forces in the main condenser chamber, caused several recirculation zones to form in this region, which made the performance of the heat pipe convoluted. The recirculation zone shapes and locations affected by the geometrical features and the heat input, play an important role in the condenser temperature distributions. The temperature distributions of the primary condenser and secondary heat pipe highly depend on the secondary heat pipe configurations and main condenser spacing, especially for the cases with higher heat inputs and higher percentages of heat transfer to the PCM via secondary heat pipes. It was found that changing the entrance shape of the primary condenser and the secondary heat pipes as well as the location and quantity of the secondary heat pipes does not diminish the recirculation zone effects. It was also concluded that changing the location of the adiabatic section reduces the jetting effect of the vapor flow and curtails the recirculation zones, leading to higher average temperature in the main condenser and secondary heat pipes. The experimental results of the conventional heat pipe are presented, however the data for the heat pipe network is not included in this dissertation. The results obtained from the experimental analyses revealed that for the transient operation, as the heat input to the system increases and the conditions at the condenser remains constant, the heat pipe operating temperature increases until it reaches another steady state condition. In addition, the effects of the working fluid and the inclination angle were studied on the performance of a heat pipe. The results showed that in gravity-assisted orientations, the inclination angle has negligible effect on the performance of the heat pipe. However, for gravity-opposed orientations, as the inclination angle increases, the temperature difference between the evaporator and condensation increases which results in higher thermal resistance. It was also found that if the heat pipe is under-filled with the working fluid, the capillary limit of the heat pipe decreases dramatically. However, overfilling of the heat pipe with working fluid degrades the heat pipe performance due to interfering with the evaporation-condensation mechanism. / Mechanical Engineering
56

Optimal Design and Operation of Community Energy Systems

Afzali, Sayyed Faridoddin January 2020 (has links)
Energy demand for buildings has been rising during recent years. Increasing building energy consumption has caused many energy-related problems and environmental issues. The on-site community energy system application is a promising way of providing energy for buildings. Community energy system usage reduces the primary energy consumption and environmental effects of greenhouse gas (GHG) emissions compared to the implementation of the stand-alone energy systems. Furthermore, due to the increase in electricity price and shortage of fossil fuel resources, renewable energies and energy storage technologies could be great alternative solutions to solve energy-related problems. Generally, the energy system might include various technologies such as internal combustion engine, heat recovery system, boiler, thermal storage tank, battery, absorption chiller, ground source heat pump, heating coil, electric chiller, solar photovoltaics (PV) and solar thermal collectors, and seasonal thermal energy storage. The economic, technical and environmental impacts of energy systems depend on the system design and operational strategy. The focus of this thesis is to propose unified frameworks, including the mathematical formulation of all of the components to determine the optimal energy system configuration, the optimal size of each component, and optimal operating strategy. The proposed methodologies address the problems related to the optimal design of the energy system for both deterministic and stochastic cases. By the use of the proposed frameworks, the design of the energy system is investigated for different specified levels of GHG emissions ratio, and the purpose is to minimize the annual total cost. To account for uncertainties and to reduce the computational times and maintain accuracy, a novel strategy is developed to produce scenarios for the stochastic problem. System design is carried out to minimize the annual total cost and conditional value at risk (CVaR) of emissions for the confidence level of 95%. The results demonstrate how the system size changes due to uncertainty and as a function of the operational GHG emissions ratio. It is shown that with the present-day technology (without solar technologies and seasonal storage), the lowest amount of GHG emissions ratio is 37%. This indicates the need for significant technological development to overcome that ratio to be 10% of stand-alone systems. This thesis introduces novel performance curves (NPC) for determining the optimal operation of the energy system. By the use of this approach, it is possible to identify the optimal operation of the energy system without solving complex optimization procedures. The application of the proposed NPC strategy is investigated for various case studies in different locations. The usage of the proposed strategy leads to the best-operating cost-saving and operational GHG savings when compared to other published approaches. It has shown that other strategies are special (not always optimal) cases of the NPC strategy. Based on the extensive literature review, it is found that it is exceptionally complicated to apply the previously proposed models of seasonal thermal energy storage in optimization software. Besides, the high computational time is required to obtain an optimum size and operation of storage from an optimization software. This thesis also proposes a new flexible semi-analytical, semi-numerical methodology to model the heat transfer process of the borehole thermal energy storage to solve the above challenges. The model increases the flexibility of the storage operation since the model can control the process of the storage by also deciding the appropriate storage zone for charging and discharging. / Thesis / Doctor of Engineering (DEng)
57

Phase Change Materials for Solar Thermal Energy Storage

Allred, Paul 21 March 2014 (has links)
Phase change materials (PCMs) are a viable option for compact thermal energy storage. Effective designs using PCMs require accurate knowledge of the thermal and physical properties, but for many PCMs these are not well known, and when known the knowledge is sometimes contradictory. Therefore, physical characteristics of several promising PCMs (K3PO4·7H2O, FeCl3·6H2O, Mn(NO3)2·4H2O) were determined. In addition, a life cycle assessment (LCA) of dodecanoic acid in a solar thermal energy storage system was carried out to determine the environmental impact for energy storage. This LCA showed that dodecanoic acid in a solar energy system would save energy and facilitate CO2 reductions. However, the economic cost is high and is unlikely to be implemented without incentives. Finally an experimental testbed for a solar thermal system utilizing dodecanoic acid was built. Preliminary measurements demonstrated the utility of this system.
58

Molten Salt Nanomaterials for Thermal Energy Storage and Concentrated Solar Power Applications

Shin, Donghyun 2011 August 1900 (has links)
The thermal efficiency of concentrated solar power (CSP) system depends on the maximum operating temperature of the system which is determined by the operating temperature of the TES device. Organic materials (such as synthetic oil, fatty acid, or paraffin wax) are typically used for TES. This limits the operating temperature of CSP units to below 400 degrees C. Increasing the operating temperature to 560 degrees C (i.e., the creeping temperature of stainless steel), can enhance the theoretical thermal efficiency from 54 percent to 63 percent. However, very few thermal storage materials are compatible for these high temperatures. Molten salts are thermally stable up to 600 degrees C and beyond. Using the molten salts as the TES materials confers several benefits, which include: (1) Higher operating temperature can significantly increase the overall cycle efficiency and resulting costs of power production. (2) Low cost of the molten salt materials can drastically reduce the cost. (3) The molten salts, which are environmentally safe, can also reduce the potential environmental impact. However, these materials suffer from poor thermo-physical properties. Impregnating these materials with nanoparticles can enhance these properties. Solvents doped with nanoparticles are termed as nanofluids. Nanofluids have been reported in the literature for the anomalous enhancement of their thermo-physical properties. In this study, the poor thermal properties of the molten salts were enhanced dramatically on mixing with nanoparticles. For example the specific heat capacity of these molten salt eutectics was found to be enhanced by as much as ~ 26 percent on mixing with nanoparticles at a mass fraction of ~ 1 percent. The resultant properties of these nanomaterials were found to be highly sensitive to small variations in the synthesis protocols. Computational models were also developed in this study to explore the fundamental transport mechanisms on the molecular scale for elucidating the anomalous enhancements in the thermo-physical properties that were measured in these experiments. This study is applicable for thermal energy storage systems utilized for other energy conversion technologies – such as geothermal energy, nuclear energy and a combination of energy generation technologies.
59

Phase Change Materials for Thermal Management in Thermal Energy Storage Applications

January 2020 (has links)
abstract: Thermal Energy Storage (TES) is of great significance for many engineering applications as it allows surplus thermal energy to be stored and reused later, bridging the gap between requirement and energy use. Phase change materials (PCMs) are latent heat-based TES which have the ability to store and release heat through phase transition processes over a relatively narrow temperature range. PCMs have a wide range of operating temperatures and therefore can be used in various applications such as stand-alone heat storage in a renewable energy system, thermal storage in buildings, water heating systems, etc. In this dissertation, various PCMs are incorporated and investigated numerically and experimentally with different applications namely a thermochemical metal hydride (MH) storage system and thermal storage in buildings. In the second chapter, a new design consisting of an MH reactor encircled by a cylindrical sandwich bed packed with PCM is proposed. The role of the PCM is to store the heat released by the MH reactor during the hydrogenation process and reuse it later in the subsequent dehydrogenation process. In such a system, the exothermic and endothermic processes of the MH reactor can be utilized effectively by enhancing the thermal exchange between the MH reactor and the PCM bed. Similarly, in the third chapter, a novel design that integrates the MH reactor with cascaded PCM beds is proposed. In this design, two different types of PCMs with different melting temperatures and enthalpies are arranged in series to improve the heat transfer rate and consequently shorten the time duration of the hydrogenation and dehydrogenation processes. The performance of the new designs (in chapters 2 and 3) is investigated numerically and compared with the conventional designs in the literature. The results indicate that the new designs can significantly enhance the time duration of MH reaction (up to 87%). In the fourth chapter, organic coconut oil PCM (co-oil PCM) is explored experimentally and numerically for the first time as a thermal management tool in building applications. The results show that co-oil PCM can be a promising solution to improve the indoor thermal environment in semi-arid regions. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2020
60

Development of a Model and Optimal Control Strategy for the Cal Poly Central Plant and Thermal Energy Storage System

Castro, Daniel Douglas 01 March 2016 (has links)
This thesis develops a calibrated model of the Cal Poly Central Chilled Water Plant with Thermal Energy Storage for use in determining an optimal operating control strategy. The model was developed using a transient systems simulation program (TRNSYS) that includes plant performance and manufacturer data for the primary system components, which are comprised of pumps, chillers, cooling towers, and a thermal energy storage tank. The model is calibrated to the actual measured performance of the plant using the current control strategy as a baseline. By observing and quantifying areas for potential improvement in plant performance under conditions of high campus cooling load demands, alternative control strategies for the plant are proposed. Operation of the plant under each of these control strategies is simulated in the model and evaluated for overall energy and demand-usage cost savings. These results are used to recommend improvements in the plant’s current control strategy, as well as to propose an optimal control strategy that may be applied to reduce plant operating costs. The results of the model identify that the plant can perform more economically by employing more chiller power to charge the Thermal Energy Storage tank to higher capacities during overnight periods when the utility rates are lower. Staging the operation of the different chillers to more precisely follow the tank charges during these off-peak periods can ensure faster tank charging when its capacity may not be sufficient to meet the peak and part-peak cooling load demands. A proposed control strategy to accomplish this breaks the overnight Off-Peak rate period into three periods with separate control setpoints, which are designed to maintain the tank charge capacity at the minimum levels to be able to accommodate the daily campus cooling demands during peak and part-peak hours.

Page generated in 0.1015 seconds