• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] EFEITOS DE INTERAÇÃO E PERCOLAÇÃO NOS ESTADOS TOPOLÓGICOS DE BORDA / [en] EFFECTS OF INTERACTION AND PERCOLATION ON TOPOLOGICAL EDGE STATES

ANTONIO FEDERICO ZEGARRA BORRERO 18 June 2021 (has links)
[pt] Nesta tese estudamos dois importantes sistemas de Isoladores Topológicos (TIs), onde nos concentramos particularmente no papel das interações e percolação nos estados de borda topológicos. Primeiro, analisamos o papel das interações vizinhas mais próximas em um protótipo de TI unidimensional, o modelo Su-Schrieffer-Heeger (SSH). Com base em um formalismo de função de Green, aplicamos a equação de Dyson em combinação com a aproximação da matriz-T para verificar a correspondência bulk-edge na presença de interações. Os expoentes críticos próximos às transições de fase topológicas são os mesmos do modelo SSH não interagente, indicando que o sistema permanece na mesma classe de universalidade, apesar da presença de interações. O segundo sistema é um TI bidimensional simétrico na inversão de tempo, ou seja, o modelo de Bernevig-Hughes-Zhang (BHZ) em conjunto com um metal ferromagnético com quebra de reversão do tempo (FMM), onde investigamos a percolação do estado Hall de spin quântico do modelo BHZ para o FMM por meio de um modelo de ligações fortes (tight-binding). Demonstramos que dependendo de se o estado de borda do cone de Dirac submerge nas sub-bandas do FMM e da direção da magnetização do FMM, a percolação do estado de borda e seu spin-momentum-locking são afetados de maneiras diferentes. Surpreendentemente, descobrimos que a corrente de spin de borda de equilíbrio no modelo BHZ, naturalmente esperada dos estados de borda de propagação do spin polarizado, está de fato ausente devido ao cancelamento das bandas de valência. No entanto, fluxos laminares de correntes de carga e spin persistente à temperatura ambiente são produzidos perto da interface da junção BHZ / FMM. Usando teoria de resposta linear, investigamos a polarização de spin induzida pela corrente causada pela percolação do estado de borda, que serve como um torque de rotação que é encontrado ser predominantemente field-like. Além disso, a polarização do spin é dramaticamente aumentada perto das impurezas na borda do modelo BHZ. / [en] In this thesis we studied two important Topological Insulators (TIs), where we focused particularly on the role of interactions and percolation on the topological edge states. First, we analyzed the role of nearest-neighbor interactions in a prototype one-dimensional TI, namely the Su-Schrieffer-Heeger (SSH) model. Based on a Green s function formalism, we applied Dyson s equation in combination with T-matrix approximation to verify the bulk-edge correspondence in the presence of interactions. The critical exponents near topological phase transitions are found to be the same as the noninteracting SSH model, indicating that the system stays in the same universality class despite the presence of interactions. The second system is a two-dimensional timereversal symmetric TI, namely the Bernevig-Hughes-Zhang (BHZ) model in conjunction with a time-reversal breaking ferromagnetic metal (FMM), where we investigated the percolation of the quantum spin Hall state from the TI layer to the FMM by means of a tight-binding model. We demonstrated that depending on whether the edge state Dirac cone submerges into the FMM subbands and the direction of the magnetization of the FMM, the percolation of the edge state and its spin-momentum locking are affected in different ways. Surprisingly, we uncover that the equilibrium edge spin current in the BHZ model, naturally expected from the spin polarized propagating edge states, is in fact absent due to the cancellation from the valence bands. Nevertheless, laminar flows of room temperature persistent charge and spin currents are produced near the interface of the BHZ/FMM junction. Using a linear response theory, we investigate the current-induced spin polarization caused by the percolation of the edge state, which serves as a spin torque that is found to be predominantly field-like. Moreover, the spin polarization is dramatically enhanced near the impurities at the edge of the BHZ model.
2

[pt] INVESTIGANDO GEOMETRIA QUÂNTICA E CRITICALIDADE QUÂNTICA POR UM MARCADOR DE FIDELIDADE / [en] INVESTIGATING QUANTUM GEOMETRY AND QUANTUM CRITICALITY BY A FIDELITY MARKER

ANTONIO LIVIO DE SOUSA CRUZ 17 October 2023 (has links)
[pt] A investigação da geometria quântica em semicondutores e isoladores tornou-se significativa devido às suas implicações nas características dos materiais. A noção de geometria quântica surge considerando a métrica quântica do estado de Bloch da banda de valência, que é definido a partir da sobreposição dos estados de Bloch em momentos ligeiramente diferentes. Ao integrar a métrica quântica em toda a zona de Brillouin, introduzimos uma quantidade que chamamos de número de fidelidade, que significa a distância média entre estados de Bloch adjacentes. Além disso, apresentamos um formalismo para expressar o número de fidelidade como um marcador de fidelidade local no espaço real que pode ser definido em qualquer sítio da rede. O marcador pode ser calculado diretamente diagonalizando o hamiltoniano da rede que descreve o comportamento das partículas na rede. Posteriormente, o conceito de número e marcador de fidelidade é estendido para temperatura finita utilizando a teoria de resposta linear, conectando-os a medições experimentais que envolvem analisar o poder de absorção óptica global e local quando o material é exposto à luz linearmente polarizada. Particularmente para materiais bidimensionais, a opacidade do material permite a determinação direta do número de fidelidade espectral, permitindo a detecção experimental do número de fidelidade. Finalmente, um marcador de fidelidade não local é introduzido considerando a divergência da métrica quântica. Este marcador é postulado como um indicador universal de transições de fase quântica, assumindo que o momento cristalino permanece um número quântico válido. Este marcador não local pode ser interpretado como uma função de correlação dos estados de Wannier, que são funções de onda localizadas que descrevem estados eletrônicos em um cristal. A generalidade e aplicabilidade destes conceitos são demonstradas através da investigação de vários isoladores topológicos e transições de fase topológicas em diferentes dimensões. Essas descobertas elaboram o significado dessas quantidades e sua conexão com vários fenômenos fundamentais na física da matéria condensada. / [en] The investigation of quantum geometry in semiconductors and insulators has become significant due to its implications for material characteristics. The notion of quantum geometry arises by considering the quantum metric of the valence-band Bloch state, which is defined from the overlap of the Bloch states at slightly different momenta. By integrating the quantum metric through-out the Brillouin zone, we introduce a quantity that we call fidelity number, which signifies the average distance between adjacent Bloch states. Furthermore, we present a formalism to express the fidelity number as a local fidelity marker in real space that can be defined on every lattice site. The marker can be calculated directly by diagonalizing the lattice Hamiltonian that describes particle behavior on the lattice. Subsequently, the concept of the fidelity number and marker is extended to finite temperature using linear-response theory, connecting them to experimental measurements which involves analyze the global and local optical absorption power when the material is exposed to linearly polarized light. Particularly for two-dimensional materials, the material s opacity enables straightforward determination of the fidelity number spectral, allowing for experimental detection of the fidelity number. Finally, a nonlocal fidelity marker is introduced by considering the divergence of the quantum metric. This marker is postulated as a universal indicator of quantum phase transitions, assuming the crystalline momentum remains a valid quantum number. This nonlocal marker can be interpreted as a correlation function of Wannier states, which are localized wave functions describing electronic states in a crystal. The generality and applicability of these concepts are demonstrated through the investigation of various topological insulators and topological phase transitions across different dimensions. These findings elaborate the significance of these quantities and their connection to various fundamental phenomena in condensed matter physics.
3

Étude de la dépendance en température de la structure électronique à l'aide de la théorie de la fonctionnelle de la densité : effets non adiabatiques, dilatation du point zéro, couplage spin-orbite et application aux transitions de phase topologiques

Brousseau-Couture, Véronique 07 1900 (has links)
Les signatures de l’existence des phonons sont omniprésentes dans les propriétés des matériaux. En première approximation, on peut scinder l'effet des phonons sur la structure électronique en deux contributions. D’une part, l'interaction électron-phonon capture la réponse électronique aux vibrations des noyaux du cristal, et d’autre, l'énergie libre de la population de phonons modifie le volume cristallin à l’équilibre. En plus d'être responsables de la dépendance en température de la structure électronique, ces deux mécanismes affectent les niveaux d'énergie à température nulle, à travers le mouvement du point zéro et l'énergie du point zéro. Cette thèse analyse l’apport de ces deux mécanismes à la renormalisation du point zéro (ZPR) de l'énergie de la bande interdite des semi-conducteurs. Une généralisation du modèle de Fröhlich prenant en compte l'anisotropie et les dégénérescences présentes dans les matériaux réels révèle que l'interaction non adiabatique entre les électrons et les noyaux domine le ZPR dans les matériaux polaires. La prise en compte de ce mécanisme dans l'évaluation de l'interaction électron-phonon est déterminante pour reproduire adéquatement les données expérimentales. L'approche développée par Grüneisen, qui néglige communément les effets du point zéro, reproduit la dilatation du point zéro du réseau (ZPLE) et sa contribution au ZPR obtenues avec la méthode standard basée sur la minimisation de l'énergie libre à moindre coût numérique, y compris pour les matériaux anisotropes. La contribution du ZPLE au ZPR total, qui a reçu peu d'attention dans la littérature, peut atteindre de 20% à plus de 80% de la contribution de l'interaction électron-phonon, y compris dans des matériaux constitués de noyaux légers. Elle domine même le ZPR du GaAs dans le contexte de la DFT semi-locale. Il est donc essentiel de traiter les deux contributions sur le même pied d'égalité pour modéliser le ZPR avec précision. L'inclusion du couplage spin-orbite (SOC) diminue le ZPR d'un ensemble substantiel de matériaux cubiques de structure zinc-blende, diamant et rock-salt. L'essentiel de cette variation tire son origine de l'effet du SOC sur les énergies électroniques statiques, qui provient en grande partie de la variation des masses effectives des bandes de valence au point \(\Gamma\). La réduction du ZPR peut être estimée à partir d'un modèle de Fröhlich généralisé auquel on a introduit le SOC. Les subtilités numériques liées au traitement de la séparation de Dresselhaus dans les matériaux non centrosymétriques sont discutées. On démontre enfin comment l'effet combiné de l'interaction électron-phonon et de la dilatation thermique affecte le diagramme de phase topologique du BiTeI. L'augmentation de la température repousse l'apparition de la phase d'isolant topologique \(\mathbb{Z}_2\) vers des pressions plus élevées et élargit la plage de pressions correspondant à la phase intermédiaire de type semi-métal de Weyl. Le caractère orbital dominant des extrema de bande influence significativement leur sensibilité à la pression et au changement de topologie. Pour guider la recherche expérimentale de phases topologiquement non triviales dans les matériaux de façon adéquate, les études numériques doivent donc considérer l'effet de la température. / Phonon signatures are ubiquitous in material properties. At first order, the effect of phonons on the electronic structure can be split into two contributions. On the one hand, the electron-phonon interaction captures the electronic response to the vibrations of the nuclei. On the other hand, the free energy of the phonon population modifies the crystalline volume at equilibrium. In addition to driving the temperature dependence of the electronic structure, these two mechanisms affect the energy levels at zero temperature through zero-point motion and zero-point energy. This thesis investigates the contribution of these two mechanisms to the zero point renormalization (ZPR) of the band gap energy of semiconductors. A generalized Fröhlich model taking into account the anisotropy and degeneracies occurring in real materials reveals that the non-adiabatic interaction between electrons and nuclei dominates the ZPR in polar materials. Taking this mechanism into account when evaluating the electron-phonon interaction is crucial to reproduce experimental data adequately. The Grüneisen formalism, which commonly neglects zero-point effects, reproduces the zero-point lattice expansion (ZPLE) and its contribution to the ZPR obtained from the standard method based on free energy minimization at lower numerical cost, including for anisotropic materials. The ZPLE contribution to the total ZPR, which has received little attention in the literature, can reach from 20% to more than 80% of the contribution of the electron-phonon interaction, including in materials containing light atoms. It even dominates the ZPR of GaAs within semilocal DFT. Therefore, both contributions should be treated on an equal footing to model the ZPR accurately. The inclusion of spin-orbit coupling (SOC) decreases the ZPR of a substantial set of cubic materials of zincblende, diamond and rocksalt structure. This variation originates mostly from the effect of SOC on the static electronic eigenvalues, which comes largely from the variation of the effective masses of the valence bands at the \(\Gamma\) point. The reduction of the ZPR can be estimated from a generalized Fröhlich model in which SOC has been introduced. Numerical subtleties related to the treatment of Dresselhaus separation in non-centrosymmetric materials are discussed. We finally show how the combination of electron-phonon interaction and thermal expansion affects the topological phase diagram of BiTeI. An increase in temperature pushes the \(\mathbb{Z}_2\) topological insulator phase towards higher pressures and widens the pressure range corresponding to the Weyl semi-metal intermediate phase. The leading orbital character of the band extrema significantly influences their sensitivity to variations in pressure and topology. To adequately guide the experimental search for topologically non-trivial phases in materials, numerical studies must therefore consider the effect of temperature.

Page generated in 0.0422 seconds