• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ENTROPY OF ELECTROENCEPHALOGRAM (EEG) SIGNALS CHANGES WITH SLEEP STATE

Mathew, Blesy Anu 01 January 2006 (has links)
We hypothesized that temporal features of EEG are altered in sleep apnea subjects comparedto normal subjects. The initial aim was to develop a measure to discriminate sleep stages innormals. The longer-term goal was to apply these methods to identify differences in EEGactivity in sleep apnea subjects from normals. We analyzed the C3A2 EEG and anelectrooculogram (EOG) recorded from 9 normal adults awake and in rapid eye movement(REM) and non-REM sleep. The EEG signals were filtered to remove EOG contamination. Twomeasures of the irregularity of EEG signals, Sample Entropy (SpEn) and Tsallis Entropy, wereevaluated for their ability to discriminate sleep stages. SpEn changes with sleep state, beinglargest in Wake. Stage 3/4 had the smallest SpEn (0.57??0.11) normalized to Wake values,followed by Stage 2 (0.72??0.09), REM (0.75??0.1) and Stage 1 (0.89??0.05). This pattern wasconsistent in all the polysomnogram records analyzed. Similar pattern was observed in leadO1A2 as well. We conclude that SpEn may be useful as part of a montage for assessing sleepstate. We analyzed data from sleep apnea subjects having obstructive and central apnea eventsand have made some preliminary observations; the SpEn values were more similar across sleepstages and also high correlation with oxygen saturation was observed.
2

Métodos de análise de imagens aplicados à caracterização tecidual, perfusão miocárdica e inervação autonômica em MRI e SPECT no contexto da doença de Chagas / Methods of image analysis applied to tissue characterization, myocardial perfusion and autonomic innervation in MRI and SPECT in the context of Chagas disease.

Barizon, Gustavo Canavaci 22 May 2015 (has links)
A doença de Chagas possui uma importante relevância clínica, sendo uma das principais causas de mortalidade e morbidade na América Latina. As relações entre a lesão tecidual miocárdica e os defeitos na inervação autonômica na doença de Chagas são pouco conhecidas. Este trabalho descreve o desenvolvimento e aplicação de métodos de segmentação, corregistro e análise de imagens capazes de prover uma análise integrada das lesões teciduais através do imageamento de ressonância magnética (MRI), perfusão miocárdica e inervação autonômica, disponíveis através da tomografia de emissão de fótons (SPECT). O método proposto é baseado na segmentação e corregistro entre as imagens MRI e imagens SPECT usando 99mTc-MIBI e 123I-MIBG. Para realizar a segmentação do miocárdio, foi utilizada a técnica de Contorno Ativo Geodésico. A segmentação de fibrose em imagens MRI foi realizada com base na maximização da entropia de Tsallis. O corregistro não-rígido foi realizado através do método B-Spline. Os resultados de quantificação indicam correlações entre a presença de fibrose, desnervação e isquemia, além de mostrar a presença de regiões de miocárdio vivo, isquêmico e desnervado. Assim, a ferramenta desenvolvida fornece uma análise integrada de informação, permitindo uma melhor compreensão da relação entre o dano ao tecido do miocárdio e defeitos de inervação autonômica causadas pela doença de Chagas. / Chagas disease is of major clinical relevance, and a major cause of morbidity and mortality in Latin America. The relations between the myocardial tissue damage, myocardial perfusion and defects in autonomic innervations are poorly understood. This study proposes the development and application of image analysis methods capable of providing an integrated visualization and analysis of tissue injuries through enhanced magnetic resonance imaging (MRI), autonomic innervations and myocardial perfusion, available through photon emission tomography (SPECT). The proposed method is based on segmentation and registration between MRI images and SPECT images using 99mTc-MIBI and 123I-MIBG. To perform the segmentation of myocardium, we used Geodesic Active Contour. Fibrosis segmentation in MRI images was performed based on the algorithm of maximum Tsallis entropy. Nonrigid registrations was performed based on B-Spline method. The quantification results showed correlations between the presence of fibrosis, denervation and ischemia, as well as showing the regarded presence of regions of healthy myocardium, ischemic and denervated. Thus, the developed tool provides an integrated analysis of information contributing to a better understanding of the relationship between myocardial tissue damage and autonomic innervations injuries caused by Chagas disease.
3

Métodos de análise de imagens aplicados à caracterização tecidual, perfusão miocárdica e inervação autonômica em MRI e SPECT no contexto da doença de Chagas / Methods of image analysis applied to tissue characterization, myocardial perfusion and autonomic innervation in MRI and SPECT in the context of Chagas disease.

Gustavo Canavaci Barizon 22 May 2015 (has links)
A doença de Chagas possui uma importante relevância clínica, sendo uma das principais causas de mortalidade e morbidade na América Latina. As relações entre a lesão tecidual miocárdica e os defeitos na inervação autonômica na doença de Chagas são pouco conhecidas. Este trabalho descreve o desenvolvimento e aplicação de métodos de segmentação, corregistro e análise de imagens capazes de prover uma análise integrada das lesões teciduais através do imageamento de ressonância magnética (MRI), perfusão miocárdica e inervação autonômica, disponíveis através da tomografia de emissão de fótons (SPECT). O método proposto é baseado na segmentação e corregistro entre as imagens MRI e imagens SPECT usando 99mTc-MIBI e 123I-MIBG. Para realizar a segmentação do miocárdio, foi utilizada a técnica de Contorno Ativo Geodésico. A segmentação de fibrose em imagens MRI foi realizada com base na maximização da entropia de Tsallis. O corregistro não-rígido foi realizado através do método B-Spline. Os resultados de quantificação indicam correlações entre a presença de fibrose, desnervação e isquemia, além de mostrar a presença de regiões de miocárdio vivo, isquêmico e desnervado. Assim, a ferramenta desenvolvida fornece uma análise integrada de informação, permitindo uma melhor compreensão da relação entre o dano ao tecido do miocárdio e defeitos de inervação autonômica causadas pela doença de Chagas. / Chagas disease is of major clinical relevance, and a major cause of morbidity and mortality in Latin America. The relations between the myocardial tissue damage, myocardial perfusion and defects in autonomic innervations are poorly understood. This study proposes the development and application of image analysis methods capable of providing an integrated visualization and analysis of tissue injuries through enhanced magnetic resonance imaging (MRI), autonomic innervations and myocardial perfusion, available through photon emission tomography (SPECT). The proposed method is based on segmentation and registration between MRI images and SPECT images using 99mTc-MIBI and 123I-MIBG. To perform the segmentation of myocardium, we used Geodesic Active Contour. Fibrosis segmentation in MRI images was performed based on the algorithm of maximum Tsallis entropy. Nonrigid registrations was performed based on B-Spline method. The quantification results showed correlations between the presence of fibrosis, denervation and ischemia, as well as showing the regarded presence of regions of healthy myocardium, ischemic and denervated. Thus, the developed tool provides an integrated analysis of information contributing to a better understanding of the relationship between myocardial tissue damage and autonomic innervations injuries caused by Chagas disease.
4

Information Theory for Biological Sequence Classification: A Novel Feature Extraction Technique Based on Tsallis Entropy

Bonidia, Robson P., Avila Santos, Anderson P., de Almeida, Breno L. S., Stadler, Peter F., Nunes da Rocha, Ulisses, Sanches, Danilo S., de Carvalho, André C. P. L. F. 05 August 2024 (has links)
In recent years, there has been an exponential growth in sequencing projects due to accelerated technological advances, leading to a significant increase in the amount of data and resulting in new challenges for biological sequence analysis. Consequently, the use of techniques capable of analyzing large amounts of data has been explored, such as machine learning (ML) algorithms. ML algorithms are being used to analyze and classify biological sequences, despite the intrinsic difficulty in extracting and finding representative biological sequence methods suitable for them. Thereby, extracting numerical features to represent sequences makes it statistically feasible to use universal concepts from Information Theory, such as Tsallis and Shannon entropy. In this study, we propose a novel Tsallis entropy-based feature extractor to provide useful information to classify biological sequences. To assess its relevance, we prepared five case studies: (1) an analysis of the entropic index q; (2) performance testing of the best entropic indices on new datasets; (3) a comparison made with Shannon entropy and (4) generalized entropies; (5) an investigation of the Tsallis entropy in the context of dimensionality reduction. As a result, our proposal proved to be effective, being superior to Shannon entropy and robust in terms of generalization, and also potentially representative for collecting information in fewer dimensions compared with methods such as Singular Value Decomposition and Uniform Manifold Approximation and Projection.
5

[en] THERMODYNAMIC NONEXTENSIVITY, DISCRETE SCALE INVARIANCE AND ELASTOPLASTICITY: A STUDY OF A SELF-ORGANIZED CRITICAL GEOMECHANICAL NUMERICAL MODEL / [pt] NÃO-EXTENSIVIDADE TERMODINÂMICA, INVARIÂNCIA DISCRETA DE ESCALA E ELASTO-PLASTICIDADE: ESTUDO NUMÉRICO DE UM MODELO GEOMECÂNICO AUTO-ORGANIZADO CRITICAMENTE

ARMANDO PRESTES DE MENEZES FILHO 02 December 2003 (has links)
[pt] Esta tese busca utilizar os novos conceitos físicos relacionados à física do estado sólido e à mecânica estatística - teoria do caos e geometria fractal - na análise do comportamento de sistemas dinâmicos não-lineares. Mais pormenorizadamente, trata-se de estudar o comportamento de um modelo numérico elasto-plástico com função de escoamento de Mohr-Coulomb, usualmente empregado em simulações de materiais geológicos - cimentados ou não -, quando submetido a carregamentos externos, situação esta geralmente encontrada em problemas afeitos à mecânica dos solos e das rochas (p/ex., estabilidade de taludes e escavações subterrâneas). Mostra-se que tal modelo geomecânico de muitos corpos (many-body) interagentes é conduzido espontaneamente, ao longo de sua evolução temporal, à chamada criticalidade auto-organizada (self- organized criticality - SOC), estado caracterizado por apresentar evolução na fronteira entre ordem e caos, sensibilidade extrema a qualquer pequena perturbação, e desenvolvimento de interações espaço-temporais de longo alcance. Como a evolução de qualquer sistema dinâmico pode ser vista como um fluxo ininterrupto de informações entre suas partes constituintes, avaliou-se, para tal sistema, a entropia de Tsallis, formulação original proposta pelo físico brasileiro Constantino Tsallis, do Centro Brasileiro de Pesquisas Físicas (CBPF), tendo se mostrado adequada à sua descrição. Em especial, determinou-se para tal sistema, pela primeira vez, o valor do índice entrópico, que parametriza a aludida forma entrópica alternativa. Ademais, como é característico de sistemas fora do equilíbrio regidos por uma dinâmica de limiar, mostra-se que tal sistema geomecânico, durante o seu desenvolvimento, teve a sua simetria translacional inicial quebrada, sendo substituída pela simetria por escala, auto-semelhante (i.é., fractal). Em decorrência, o modelo exibe a chamada invariância discreta de escala (discrete scale invariance - DSI), fruto do processo mesmo de ruptura progressiva do material heterogêneo. Especificamente, as simulações numéricas sugeriram que o processo de ruptura progressiva do material elasto-plástico se dá por uma transferência multiplicativa de tensões, em diferentes escalas de observação hierarquicamente dispostas, acarretando o aparecimento de sinais bastante peculiares, caracterizados por desvios oscilatórios sistemáticos do padrão em lei de potência, o que possibilita a previsão de sua ruína, quando ainda em fase preparatória. Assim, esta pesquisa mostrou a eficiência de tal método de previsão, aplicado, pela primeira vez, não somente aos resultados das simulações numéricas do referido modelo geomecânico, como aos ensaios de laboratório em rochas sedimentares, realizados no Centro de Pesquisas da Petrobrás (CENPES). Por fim, é interessante assinalar que o material elasto-plástico investigado neste trabalho teve seu comportamento compartilhado por um modelo matemático bastante simples, fundamentado na função binomial multifractal, reconhecida por descrever processos multiplicativos em diferentes escalas. / [en] This thesis aims at applying new concepts from solid state physics and statistical mechanics - chaos theory and fractal geometry - to the study of nonlinear dynamic systems. More precisely, it deals with a two-dimensional continuum elastoplastic Mohr-Coulomb model, commonly used to simulate pressure-sensitive materials (e.g., soils, rocks and concrete) subjected to stress-strain fields, normally found in general soil or rock mechanics problems (e.g., slope stability and underground excavations). It is shown that such many-body system is spontaneously driven to a state at the edge of chaos, called self- organized criticality (SOC), capable of developing long- range interactions in space and long-range memory in time. A new entropic form proposed by C. Tsallis is presented and shown that it is the suitable theoretical framework to deal with these problems. Furthermore, the index q of the Tsallis entropy, which measures the degree of non- additivity of the system, is calculated, for the first time, for an elastoplastic model. In addition, as is usual in non-equilibrium systems with threshold dynamics, the model changes its symmetry, from translational to fractal (that is, self-similar), leading to what is called discrete scale invariance. It is shown that this special type of scale invariance, characterized by systematic oscillatory deviations from the fundamental power-law behavior, can be used to predict the failure of heterogeneous materials, while the process is still being build-up, i.e., from precursory signals, typical of progressive failure processes. Specifically, this framework was applied, for the first time, not only to the elastoplastic geomechanical model, but to laboratory tests in sedimentary rocks as well. Finally, it is interesting to realize that the above- mentioned behaviors are also displayed by the binomial multifractal function, known to adequately describe multiplicative cascading processes.
6

On Generalized Measures Of Information With Maximum And Minimum Entropy Prescriptions

Dukkipati, Ambedkar 03 1900 (has links)
Kullback-Leibler relative-entropy or KL-entropy of P with respect to R defined as ∫xlnddPRdP , where P and R are probability measures on a measurable space (X, ), plays a basic role in the definitions of classical information measures. It overcomes a shortcoming of Shannon entropy – discrete case definition of which cannot be extended to nondiscrete case naturally. Further, entropy and other classical information measures can be expressed in terms of KL-entropy and hence properties of their measure-theoretic analogs will follow from those of measure-theoretic KL-entropy. An important theorem in this respect is the Gelfand-Yaglom-Perez (GYP) Theorem which equips KL-entropy with a fundamental definition and can be stated as: measure-theoretic KL-entropy equals the supremum of KL-entropies over all measurable partitions of X . In this thesis we provide the measure-theoretic formulations for ‘generalized’ information measures, and state and prove the corresponding GYP-theorem – the ‘generalizations’ being in the sense of R ´enyi and nonextensive, both of which are explained below. Kolmogorov-Nagumo average or quasilinear mean of a vector x = (x1, . . . , xn) with respect to a pmf p= (p1, . . . , pn)is defined ashxiψ=ψ−1nk=1pkψ(xk), whereψis an arbitrarycontinuous and strictly monotone function. Replacing linear averaging in Shannon entropy with Kolmogorov-Nagumo averages (KN-averages) and further imposing the additivity constraint – a characteristic property of underlying information associated with single event, which is logarithmic – leads to the definition of α-entropy or R ´enyi entropy. This is the first formal well-known generalization of Shannon entropy. Using this recipe of R´enyi’s generalization, one can prepare only two information measures: Shannon and R´enyi entropy. Indeed, using this formalism R´enyi characterized these additive entropies in terms of axioms of KN-averages. On the other hand, if one generalizes the information of a single event in the definition of Shannon entropy, by replacing the logarithm with the so called q-logarithm, which is defined as lnqx =x1− 1 −1 −q , one gets what is known as Tsallis entropy. Tsallis entropy is also a generalization of Shannon entropy but it does not satisfy the additivity property. Instead, it satisfies pseudo-additivity of the form x ⊕qy = x + y + (1 − q)xy, and hence it is also known as nonextensive entropy. One can apply R´enyi’s recipe in the nonextensive case by replacing the linear averaging in Tsallis entropy with KN-averages and thereby imposing the constraint of pseudo-additivity. A natural question that arises is what are the various pseudo-additive information measures that can be prepared with this recipe? We prove that Tsallis entropy is the only one. Here, we mention that one of the important characteristics of this generalized entropy is that while canonical distributions resulting from ‘maximization’ of Shannon entropy are exponential in nature, in the Tsallis case they result in power-law distributions. The concept of maximum entropy (ME), originally from physics, has been promoted to a general principle of inference primarily by the works of Jaynes and (later on) Kullback. This connects information theory and statistical mechanics via the principle: the states of thermodynamic equi- librium are states of maximum entropy, and further connects to statistical inference via select the probability distribution that maximizes the entropy. The two fundamental principles related to the concept of maximum entropy are Jaynes maximum entropy principle, which involves maximizing Shannon entropy and the Kullback minimum entropy principle that involves minimizing relative-entropy, with respect to appropriate moment constraints. Though relative-entropy is not a metric, in cases involving distributions resulting from relative-entropy minimization, one can bring forth certain geometrical formulations. These are reminiscent of squared Euclidean distance and satisfy an analogue of the Pythagoras’ theorem. This property is referred to as Pythagoras’ theorem of relative-entropy minimization or triangle equality and plays a fundamental role in geometrical approaches to statistical estimation theory like information geometry. In this thesis we state and prove the equivalent of Pythagoras’ theorem in the nonextensive formalism. For this purpose we study relative-entropy minimization in detail and present some results. Finally, we demonstrate the use of power-law distributions, resulting from ME-rescriptions of Tsallis entropy, in evolutionary algorithms. This work is motivated by the recently proposed generalized simulated annealing algorithm based on Tsallis statistics. To sum up, in light of their well-known axiomatic and operational justifications, this thesis establishes some results pertaining to the mathematical significance of generalized measures of information. We believe that these results represent an important contribution towards the ongoing research on understanding the phenomina of information. (For formulas pl see the original document) ii
7

Redes complexas de expressão gênica: síntese, identificação, análise e aplicações / Gene expression complex networks: synthesis, identification, analysis and applications

Lopes, Fabricio Martins 21 February 2011 (has links)
Os avanços na pesquisa em biologia molecular e bioquímica permitiram o desenvolvimento de técnicas capazes de extrair informações moleculares de milhares de genes simultaneamente, como DNA Microarrays, SAGE e, mais recentemente RNA-Seq, gerando um volume massivo de dados biológicos. O mapeamento dos níveis de transcrição dos genes em larga escala é motivado pela proposição de que o estado funcional de um organismo é amplamente determinado pela expressão de seus genes. No entanto, o grande desafio enfrentado é o pequeno número de amostras (experimentos) com enorme dimensionalidade (genes). Dessa forma, se faz necessário o desenvolvimento de novas técnicas computacionais e estatísticas que reduzam o erro de estimação intrínseco cometido na presença de um pequeno número de amostras com enorme dimensionalidade. Neste contexto, um foco importante de pesquisa é a modelagem e identificação de redes de regulação gênica (GRNs) a partir desses dados de expressão. O objetivo central nesta pesquisa é inferir como os genes estão regulados, trazendo conhecimento sobre as interações moleculares e atividades metabólicas de um organismo. Tal conhecimento é fundamental para muitas aplicações, tais como o tratamento de doenças, estratégias de intervenção terapêutica e criação de novas drogas, bem como para o planejamento de novos experimentos. Nessa direção, este trabalho apresenta algumas contribuições: (1) software de seleção de características; (2) nova abordagem para a geração de Redes Gênicas Artificiais (AGNs); (3) função critério baseada na entropia de Tsallis; (4) estratégias alternativas de busca para a inferência de GRNs: SFFS-MR e SFFS-BA; (5) investigação biológica das redes gênicas envolvidas na biossíntese de tiamina, usando a Arabidopsis thaliana como planta modelo. O software de seleção de características consiste de um ambiente de código livre, gráfico e multiplataforma para problemas de bioinformática, que disponibiliza alguns algoritmos de seleção de características, funções critério e ferramentas de visualização gráfica. Em particular, implementa um método de inferência de GRNs baseado em seleção de características. Embora existam vários métodos propostos na literatura para a modelagem e identificação de GRNs, ainda há um problema muito importante em aberto: como validar as redes identificadas por esses métodos computacionais? Este trabalho apresenta uma nova abordagem para validação de tais algoritmos, considerando três aspectos principais: (a) Modelo para geração de Redes Gênicas Artificiais (AGNs), baseada em modelos teóricos de redes complexas, os quais são usados para simular perfis temporais de expressão gênica; (b) Método computacional para identificação de redes gênicas a partir de dados temporais de expressão; e (c) Validação das redes identificadas por meio do modelo AGN. O desenvolvimento do modelo AGN permitiu a análise e investigação das características de métodos de inferência de GRNs, levando ao desenvolvimento de um estudo comparativo entre quatro métodos disponíveis na literatura. A avaliação dos métodos de inferência levou ao desenvolvimento de novas metodologias para essa tarefa: (a) uma função critério, baseada na entropia de Tsallis, com objetivo de inferir os inter-relacionamentos gênicos com maior precisão; (b) uma estratégia alternativa de busca para a inferência de GRNs, chamada SFFS-MR, a qual tenta explorar uma característica local das interdependências regulatórias dos genes, conhecida como predição intrinsecamente multivariada; e (c) uma estratégia de busca, interativa e flutuante, que baseia-se na topologia de redes scale-free, como uma característica global das GRNs, considerada como uma informação a priori, com objetivo de oferecer um método mais adequado para essa classe de problemas e, com isso, obter resultados com maior precisão. Também é objetivo deste trabalho aplicar a metodologia desenvolvida em dados biológicos, em particular na identificação de GRNs relacionadas a funções específicas de Arabidopsis thaliana. Os resultados experimentais, obtidos a partir da aplicação das metodologias propostas, mostraram que os respectivos ganhos de desempenho foram significativos e adequados para os problemas a que foram propostos. / Thanks to recent advances in molecular biology and biochemistry, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as DNA microarrays, SAGE, and more recently RNA-Seq, generating a massive volume of biological data. The mapping of gene transcription levels at large scale is motivated by the proposition that information of the functional state of an organism is broadly determined by its gene expression. However, the main limitation faced is the small number of samples (experiments) with huge dimensionalities (genes). Thus, it is necessary to develop new computational and statistics techniques to reduce the inherent estimation error committed in the presence of a small number of samples with large dimensionality. In this context, particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. The main objective of this research is to infer how genes are regulated, bringing knowledge about the molecular interactions and metabolic activities of an organism. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. In this direction, this work presents some contributions: (1) feature selection software; (2) new approach for the generation of artificial gene networks (AGN); (3) criterion function based on Tsallis entropy; (4) alternative search strategies for GRNs inference: SFFS-MR and SFFS-BA; (5) biological investigation of GRNs involved in the thiamine biosynthesis by adopting the Arabidopsis thaliana as a model plant. The feature selection software is an open-source multiplataform graphical environment for bioinformatics problems, which supports many feature selection algorithms, criterion functions and graphic visualization tools. In particular, a feature selection method for GRNs inference is also implemented in the software. Although there are several methods proposed in the literature for the modeling and identification of GRNs, an important open problem regards: how to validate such methods and its results? This work presents a new approach for validation of such algorithms by considering three main aspects: (a) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (b) computational method for GRNs identification from temporal expression data; and (c) Validation of the identified AGN-based network through comparison with the original network. Through the development of the AGN model was possible the analysis and investigation of the characteristics of GRNs inference methods, leading to the development of a comparative study of four inference methods available in literature. The evaluation of inference methods led to the development of new methodologies for this task: (a) a new criterion function based on Tsallis entropy, in order to infer the genetic inter-relationships with better precision; (b) an alternative search strategy for the GRNs inference, called SFFS-MR, which tries to exploit a local property of the regulatory gene interdependencies, which is known as intrinsically multivariate prediction; and (c) a search strategy, interactive and floating, which is based on scale-free network topology, as a global property of the GRNs, which is considered as a priori information, in order to provide a more appropriate method for this class of problems and thereby achieve results with better precision. It is also an objective of this work, to apply the developed methodology in biological data, particularly in identifying GRNs related to specific functions of the Arabidopsis thaliana. The experimental results, obtained from the application of the proposed methodologies, indicate that the respective performances of each methodology were significant and adequate to the problems that have been proposed.
8

Minimization Problems Based On A Parametric Family Of Relative Entropies

Ashok Kumar, M 05 1900 (has links) (PDF)
We study minimization problems with respect to a one-parameter family of generalized relative entropies. These relative entropies, which we call relative -entropies (denoted I (P; Q)), arise as redundancies under mismatched compression when cumulants of compression lengths are considered instead of expected compression lengths. These parametric relative entropies are a generalization of the usual relative entropy (Kullback-Leibler divergence). Just like relative entropy, these relative -entropies behave like squared Euclidean distance and satisfy the Pythagorean property. We explore the geometry underlying various statistical models and its relevance to information theory and to robust statistics. The thesis consists of three parts. In the first part, we study minimization of I (P; Q) as the first argument varies over a convex set E of probability distributions. We show the existence of a unique minimizer when the set E is closed in an appropriate topology. We then study minimization of I on a particular convex set, a linear family, which is one that arises from linear statistical constraints. This minimization problem generalizes the maximum Renyi or Tsallis entropy principle of statistical physics. The structure of the minimizing probability distribution naturally suggests a statistical model of power-law probability distributions, which we call an -power-law family. Such a family is analogous to the exponential family that arises when relative entropy is minimized subject to the same linear statistical constraints. In the second part, we study minimization of I (P; Q) over the second argument. This minimization is generally on parametric families such as the exponential family or the - power-law family, and is of interest in robust statistics ( > 1) and in constrained compression settings ( < 1). In the third part, we show an orthogonality relationship between the -power-law family and an associated linear family. As a consequence of this, the minimization of I (P; ), when the second argument comes from an -power-law family, can be shown to be equivalent to a minimization of I ( ; R), for a suitable R, where the first argument comes from a linear family. The latter turns out to be a simpler problem of minimization of a quasi convex objective function subject to linear constraints. Standard techniques are available to solve such problems, for example, via a sequence of convex feasibility problems, or via a sequence of such problems but on simpler single-constraint linear families.
9

Redes complexas de expressão gênica: síntese, identificação, análise e aplicações / Gene expression complex networks: synthesis, identification, analysis and applications

Fabricio Martins Lopes 21 February 2011 (has links)
Os avanços na pesquisa em biologia molecular e bioquímica permitiram o desenvolvimento de técnicas capazes de extrair informações moleculares de milhares de genes simultaneamente, como DNA Microarrays, SAGE e, mais recentemente RNA-Seq, gerando um volume massivo de dados biológicos. O mapeamento dos níveis de transcrição dos genes em larga escala é motivado pela proposição de que o estado funcional de um organismo é amplamente determinado pela expressão de seus genes. No entanto, o grande desafio enfrentado é o pequeno número de amostras (experimentos) com enorme dimensionalidade (genes). Dessa forma, se faz necessário o desenvolvimento de novas técnicas computacionais e estatísticas que reduzam o erro de estimação intrínseco cometido na presença de um pequeno número de amostras com enorme dimensionalidade. Neste contexto, um foco importante de pesquisa é a modelagem e identificação de redes de regulação gênica (GRNs) a partir desses dados de expressão. O objetivo central nesta pesquisa é inferir como os genes estão regulados, trazendo conhecimento sobre as interações moleculares e atividades metabólicas de um organismo. Tal conhecimento é fundamental para muitas aplicações, tais como o tratamento de doenças, estratégias de intervenção terapêutica e criação de novas drogas, bem como para o planejamento de novos experimentos. Nessa direção, este trabalho apresenta algumas contribuições: (1) software de seleção de características; (2) nova abordagem para a geração de Redes Gênicas Artificiais (AGNs); (3) função critério baseada na entropia de Tsallis; (4) estratégias alternativas de busca para a inferência de GRNs: SFFS-MR e SFFS-BA; (5) investigação biológica das redes gênicas envolvidas na biossíntese de tiamina, usando a Arabidopsis thaliana como planta modelo. O software de seleção de características consiste de um ambiente de código livre, gráfico e multiplataforma para problemas de bioinformática, que disponibiliza alguns algoritmos de seleção de características, funções critério e ferramentas de visualização gráfica. Em particular, implementa um método de inferência de GRNs baseado em seleção de características. Embora existam vários métodos propostos na literatura para a modelagem e identificação de GRNs, ainda há um problema muito importante em aberto: como validar as redes identificadas por esses métodos computacionais? Este trabalho apresenta uma nova abordagem para validação de tais algoritmos, considerando três aspectos principais: (a) Modelo para geração de Redes Gênicas Artificiais (AGNs), baseada em modelos teóricos de redes complexas, os quais são usados para simular perfis temporais de expressão gênica; (b) Método computacional para identificação de redes gênicas a partir de dados temporais de expressão; e (c) Validação das redes identificadas por meio do modelo AGN. O desenvolvimento do modelo AGN permitiu a análise e investigação das características de métodos de inferência de GRNs, levando ao desenvolvimento de um estudo comparativo entre quatro métodos disponíveis na literatura. A avaliação dos métodos de inferência levou ao desenvolvimento de novas metodologias para essa tarefa: (a) uma função critério, baseada na entropia de Tsallis, com objetivo de inferir os inter-relacionamentos gênicos com maior precisão; (b) uma estratégia alternativa de busca para a inferência de GRNs, chamada SFFS-MR, a qual tenta explorar uma característica local das interdependências regulatórias dos genes, conhecida como predição intrinsecamente multivariada; e (c) uma estratégia de busca, interativa e flutuante, que baseia-se na topologia de redes scale-free, como uma característica global das GRNs, considerada como uma informação a priori, com objetivo de oferecer um método mais adequado para essa classe de problemas e, com isso, obter resultados com maior precisão. Também é objetivo deste trabalho aplicar a metodologia desenvolvida em dados biológicos, em particular na identificação de GRNs relacionadas a funções específicas de Arabidopsis thaliana. Os resultados experimentais, obtidos a partir da aplicação das metodologias propostas, mostraram que os respectivos ganhos de desempenho foram significativos e adequados para os problemas a que foram propostos. / Thanks to recent advances in molecular biology and biochemistry, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as DNA microarrays, SAGE, and more recently RNA-Seq, generating a massive volume of biological data. The mapping of gene transcription levels at large scale is motivated by the proposition that information of the functional state of an organism is broadly determined by its gene expression. However, the main limitation faced is the small number of samples (experiments) with huge dimensionalities (genes). Thus, it is necessary to develop new computational and statistics techniques to reduce the inherent estimation error committed in the presence of a small number of samples with large dimensionality. In this context, particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. The main objective of this research is to infer how genes are regulated, bringing knowledge about the molecular interactions and metabolic activities of an organism. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. In this direction, this work presents some contributions: (1) feature selection software; (2) new approach for the generation of artificial gene networks (AGN); (3) criterion function based on Tsallis entropy; (4) alternative search strategies for GRNs inference: SFFS-MR and SFFS-BA; (5) biological investigation of GRNs involved in the thiamine biosynthesis by adopting the Arabidopsis thaliana as a model plant. The feature selection software is an open-source multiplataform graphical environment for bioinformatics problems, which supports many feature selection algorithms, criterion functions and graphic visualization tools. In particular, a feature selection method for GRNs inference is also implemented in the software. Although there are several methods proposed in the literature for the modeling and identification of GRNs, an important open problem regards: how to validate such methods and its results? This work presents a new approach for validation of such algorithms by considering three main aspects: (a) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (b) computational method for GRNs identification from temporal expression data; and (c) Validation of the identified AGN-based network through comparison with the original network. Through the development of the AGN model was possible the analysis and investigation of the characteristics of GRNs inference methods, leading to the development of a comparative study of four inference methods available in literature. The evaluation of inference methods led to the development of new methodologies for this task: (a) a new criterion function based on Tsallis entropy, in order to infer the genetic inter-relationships with better precision; (b) an alternative search strategy for the GRNs inference, called SFFS-MR, which tries to exploit a local property of the regulatory gene interdependencies, which is known as intrinsically multivariate prediction; and (c) a search strategy, interactive and floating, which is based on scale-free network topology, as a global property of the GRNs, which is considered as a priori information, in order to provide a more appropriate method for this class of problems and thereby achieve results with better precision. It is also an objective of this work, to apply the developed methodology in biological data, particularly in identifying GRNs related to specific functions of the Arabidopsis thaliana. The experimental results, obtained from the application of the proposed methodologies, indicate that the respective performances of each methodology were significant and adequate to the problems that have been proposed.

Page generated in 0.0558 seconds