Spelling suggestions: "subject:"[een] TURBINE"" "subject:"[enn] TURBINE""
171 |
Aerodynamics of low pressure steam turbine exhaust systemsDing, Bowen January 2019 (has links)
The low pressure (LP) exhaust system presents a promising avenue for improving the performance of large steam turbines. For this reason, LP exhaust systems have attracted the attention of the research community for decades. Nevertheless, we still lack understanding of the flow physics and loss mechanisms in the exhaust system, especially at part-load conditions. It is also unclear how the exhaust system should be designed when its required operating range widens. This thesis provides solutions to these aerodynamic issues through experimental and numerical investigations, and provides tools that could contribute to better designs of LP exhaust systems. Firstly, the Computational Fluid Dynamics (CFD) solver ANSYS CFX was validated against experiments performed on a scaled test rig under representative part-load flow conditions. This validation exposed the weakness of Reynolds-averaged Navier-Stokes (RANS) CFD when there is a highly swirling flow and large separation regions in the exhaust diffuser. To facilitate the numerical studies, a series of tools were also developed. A design suite, ExhaustGen, was used to automate the pre- and post-processing of CFD calculations. The exhaust diffuser was parametrised using "Minimum Energy Curves", which reduce the dimension of parameter space. Further, a suitable stage-hood interface treatment (Multiple Mixing Planes) was chosen to predict the circumferentially non-uniform flow in the exhaust hood at low computational cost. Numerical investigation of the baseline geometry provided insights into the key flow features and loss mechanisms in the exhaust system, over a wide range of operating conditions. In particular, the bearing cone separation was identified as a key source of loss at part-load conditions. The effect of stage-hood interaction on the performance and design of the exhaust system was studied by varying the rotor blade design, which can positively influence system performance. Finally, a global sensitivity study was performed to identify the most influential design parameters of the exhaust hood. These findings allow, for the first time, LP exhaust hood performance maps to be constructed, so that the benefits of choosing a suitable hood geometry and blade design can be revealed. The thesis also offers contribution towards formulating LP exhaust system design guidance for a wide operating range.
|
172 |
Development of blade tip timing techniques in turbo machineryJousselin, Olivier January 2013 (has links)
In the current gas turbine market, the traditional design-test-redesign loop is not a viable solution to deploy new products within short timeframes. Hence, to keep the amount of testing to an absolute minimum, theoretical simulation tools like Finite Element Modelling (FEM) have become a driving force in the design of blades to predict the dynamic behaviour of compressor and turbine assemblies in high-speed and unsteady flows. The predictions from these simulation tools need to be supported and validated by measurements. For the past five years, Rolls-Royce Blade Tip Timing (BTT) technology has been replacing rotating Strain Gauge systems to measure the vibration of compressor blades, reducing development times and costs of new aero engine programmes. The overall aim of the present thesis is to progress the BTT technology to be applied to aero engine turbine modules. To this end, the two main objectives of this project are: i. To improve the current validated Rolls-Royce BTT extraction techniques, through the development of novel algorithms for single/multiple asynchronous and responses. ii. To validate the improved extraction using simulated and real engine test data in order to bring the Turbine BTT technology to a Rolls-Royce Technology Readiness Level (TRL) of 4 (i.e. component and/or partial system validation in laboratory environment). The methodology adopted for the development of the novel algorithms is entirely based on matrix algebra and makes extensive use of singular value decomposition as a means for assessing the degree optimisation achieved through various novel manipulations of the input (probe) raw data. The principle contributions of this thesis are threefold: i. The development of new BTT matrix-based models for single/multiple non-integral and integral engine order responses that removed certain pre-processing assumptions required by the current method. ii. The development of BTT technology to operate under the constraint of having equally spaced probes, which is unavoidable in turbines and renders current BTT methods unusable for turbine applications. iii. The development of methods for extracting measurement uncertainty and signal to noise ratios that are based solely on the raw data, without reliance on simulated reference data. Following the verification and validation of the new processing algorithms against simulated data and against validated software with numerous examples of actual engine test data, a Rolls-Royce's Research & Technology (R&T) Critical Capability Acquisition and Capability Readiness (CCAR) review has accredited the novel techniques with a TRL of 4.
|
173 |
Investigation Of Different Airfoils on Outer Sections of Large Rotor BladesThuné, Sebastian, Soland, Torstein January 2012 (has links)
Wind power counts for roughly 3 % of the global electricity production. In the chase to produce greener power, much attention lies on getting more electricity from the wind, extraction of kinetic energy, with help of wind turbines. Wind turbines have been used for electricity production since 1887 and have since then developed into more efficient designs and become significantly bigger and with a higher efficiency. The operational conditions change considerably over the rotor length. Inner sections are typically exposed to more complex operational conditions than the outer sections. However, the outer blade sections have a much larger impact on the power and load generation. Especially here the demand for good aerodynamic performance is large. Airfoils have to be identified and investigated on mid/outer sections of a 7.0 MW rotor with 165 m diameter. Blade performance criteria were determined and investigations like sensitivity analysis were made. With the use of XFLR5 (XFoil) and Qblade, the airfoils were made into a blade and tested with the blade element momentum theory. This simulation gave detailed information regarding performance and operational loads depending on the different airfoils used. These results were then validated in a professional aero-elastic code (Flex5), simulating steady state, turbulent and wind shear conditions. The best airfoils to use from this reports airfoil catalogue are the NACA 63-6XX and NACA 64-6XX. With the implementation of these airfoils, blade design 2 and 3 have a very high performance coefficient compared to large commercial HAWT rotors.
|
174 |
Design of PM generator for a vertical axis wind turbineNorström Parliden, Jonas, Rynkiewicz, Mateusz January 2012 (has links)
The task in this project is to design a generator for a vertical axis wind turbine withpower rated to 20kW at a wind speed of 10m/s. The project is conducted at theDivision of Electricity at Uppsala University with collaboration from ElectricGeneration AB. The design has just a few moving parts, which decreases maintenancecosts and increases its toughness. The turbine absorbs wind from every direction butits rotation speed ratio is lower than horizontal axis wind turbines. It means that thegenerator must be bigger and therefore more expensive. Price is an importantcriterion for the generator. Neodymium magnets are expensive so the amount of thismaterial must be limited.Several designs have been simulated but one final design has proven the mostpromising. It fulfills all specifications such as efficiency above 95%, 20kW outputpower and it also has a relatively low amount of hard magnetic material.A design with a single row of cables per slot was decided upon to eliminate heatpockets between cable rows, which can occur in designs with two cable rows perslot. It would be interesting to study designs with two or more cable rows per slot, asit could lead to a smaller and more efficient machine.
|
175 |
Study of Linear Equivalent Circuits of Electromechanical Systems for Turbine Generator UnitsTsai, Chia-Chun 27 December 2012 (has links)
The thesis utilizes the analogy in dynamic equations between a mechanical and an electrical system to convert the steam-turbine, micro-turbine, wind-turbine and hydro-turbine generator mechanical model to equivalent electrical circuit models respectively. And based on the round rotor type and permanent magnetic rotor type synchronous generators¡¦ dynamic equations, as well as their electromagnetic torque equations, the equivalent electrical interface circuits were derived respectively. By using the interface circuit, the circuit model of synchronous generator and the equivalent electrical circuit model of turbine-generator mechanism can thus be combined into the electromechanical integrated circuit model (Thevenin¡¦s analogy circuit model and Norton's analogy circuit model). The electromechanical integrated circuit model is helpful for analyzing the energy conversion, power transmission and interactions between the mechanical and electrical systems for a turbine generator unit. In order to learn about these electromechanical interactions by using the proposed electromechanical integrated circuit model, the thesis has made a study on the torsional vibrations for a small gas turbine generator unit and for a large steam turbine generator unit respectively. By way of the frequency scanning and eigenvalue calculation, it is found that the torsional mode frequencies can be changed due to the electromechanical integration. Moreover, the small unit was more affected by the electromechanical integration than the large unit. Finally, we studied the effect of operations of an Electric Arc Furnaces (EAF) on torsional vibrations of a low capacity turbine generator. The electric system studied belongs to a practical steel plant in an industrial park. Based on the electromechanical integrated equivalent circuit model, a flywheel coupling shaft was designed. It is found by simulations that the coupling shaft can be quite effective in alleviating vibrations caused by the system unbalance arising from the EAF operations.
|
176 |
Heat Transfer in Smooth and Ribbed Rectangular Two-Pass Channels with a Developing Flow Entrance at High Rotation NumbersHuh, Michael 16 January 2010 (has links)
Cooling channels with a developing flow entrance condition and aspect ratios of
1:4 and 2:1 were studied. The range of the rotation number and buoyancy parameter for
the selected AR channels was extended. The maximum Ro and Bo for the 1:4 channel
was 0.67 and 1.9, respectively. For the 2:1 channel, these values were 0.45 and 0.85,
respectively.
The effect of rib spacing and rib height on heat transfer in the 1:4 channel is
investigated. Three rib spacing configurations were considered: P/e=2.5, 5, 10 with a
constant e/Dh ratio of 0.078. To investigate the effect of rib height, a rib configuration
with an e/Dh ratio of 0.156 and P/e ratio of 10 was considered. For the 2:1 channel, a
smooth channel surface condition was studied. For each channel aspect ratio and surface
condition, five Reynolds numbers were studied up to 40K. At each Re, five rotational
speeds are considered up to 400 rpm.
The results of this research work indicate that rotation can cause a significant
increase in heat transfer on the first pass trailing surface of both aspect ratio channels. The leading surface in ribbed channels has shown a dramatic decrease in heat transfer
with rotation in the first pass. Reductions in heat transfer by as much as 50% were
observed. In the second pass, the leading and trailing surfaces with ribs showed very
similar effects of rotation. Also, the effect of rotation seems to vary with the rib spacing.
The strength of rotation showed to be greater in the tight rib spacing of P/e=2.5. The rib
height in the 1:4 channel had minimal impact due to the large distance between the
leading and trailing surfaces. The tip cap heat transfer for both channels showed large
increases with rotation. This is very beneficial since tip cooling is an important part of
maintaining the life a turbine blade. Finally, the buoyancy parameter proved to be very
useful in predicting heat transfer in rotating conditions. The correlations developed
showed very acceptable accuracy when compared to the experimental data.
|
177 |
Evaluation of Gas Turbine Cogeneration with Fuel CellLe, Fang-Chi 25 July 2000 (has links)
none
|
178 |
A novel isolation curtain to reduce turbine ingress heating and an advanced model for honeycomb labyrinth sealsChoi, Dong Chun 16 August 2006 (has links)
A combination of 3-D and 2-D computational fluid dynamics (CFD) modeling
as well as experimental testing of the labyrinth seal with hexagonal honeycomb cells on
the stator wall was performed. For the 3-D and 2-D CFD models, the hexagonal
honeycomb structure was modeled using the concept of the baffle (zero-thickness wall)
and the simplified 2-D fin, respectively. The 3-D model showed that even a small axial
change of the tooth (or honeycomb wall) location, or a small circumferential change of
the honeycomb wall location significantly affected the flow patterns and leakage
characteristics especially for small tooth tip clearance. Also, the local details of the flow
field were investigated.
The seven basic procedural steps to develop a 2-D axisymmetric honeycomb
labyrinth seal leakage model were shown. Clearly demonstrated for varying test
conditions was the 2-D model capability to predict the 3-D honeycomb labyrinth flow
that had been measured at different operating conditions from that used in developing the
2-D model. Specifically, the 2-D model showed very close agreement with measurements. In addition, the 2-D model greatly reduced the computer resource
requirement needed to obtain a solution of the 3-D honeycomb labyrinth seal leakage.
The novel and advanced strategy to reduce the turbine ingress heating, and thus
the coolant requirement, by injecting a Âcoolant isolation curtain was developed
numerically using a 3-D CFD model. The coolant isolation curtain was applied under the
nozzle guide vane platform for the forward cavity of a turbine stage. Specifically, the
isolation curtain serves to isolate the hot mainstream gas from the turbine outer region.
The effect of the geometry change, the outer cavity axial gap clearance, the
circumferential location of the injection curtain slot and the injection fluid angle on the
ingress heating was investigated. Adding the chamfer to the baseline design gave a
similar or higher maximum temperature T*
max than did the baseline design without
chamfer, but implementation of the injection curtain slot reduced substantially T*
max of
the outer region. In addition, a more desirable uniform adiabatic wall temperature
distribution along the outer rotor and stator surfaces was observed due to the presence of
the isolation curtain.
|
179 |
The influence of earthquake ground motion on wind turbine loadsArora, Himanshu 17 June 2011 (has links)
The design of wind turbines installed in various regions of the world where earthquakes are likely must take into account loads imposed on the turbine due to ground shaking. Currently, design standards such as the International Electrotechnical Commission’s standard, IEC 61400-1, do not provide detailed guidelines for assessing loads on wind turbines due to seismic input excitation. In regions of high seismic hazard, it is extremely important to perform a thorough seismic analysis. Various simplified and full-system wind turbine models have been published and used for seismic analysis of turbine loads in recent years. Among these models, the open-source software, FAST, allows for full-system simulation of the response of wind turbines subjected to earthquake ground motion along with other sources of loading such as from the mean wind field and turbulence. This study employs this open-source software to simulate seismic loads and presents statistical and spectral summaries resulting from extensive analyses undertaken by simulating turbine response to various input motions from Western U.S. earthquakes. A total of 150 different earthquake ground motion records with varying magnitude and distance from fault rupture are selected and normalized/scaled to selected target levels prior to response simulation using a utility-scale 5-MW wind turbine model. The records selected are divided into six groups of 25 records each; the groups consist of different magnitude and distance-to-rupture values. The records in each bin are scaled to have similar demand levels as the average of the demand of the unscaled records in that bin. Two different normalization options are considered—in one, the scaling is at the rotor rotation rate (or the once-per-rev or 1P frequency); in the other, the scaling is done at the tower fore-aft first mode frequency. A study of various turbine load measures is conducted. It is found that turbine tower loads, in particular, are especially influenced by the earthquake excitation. / text
|
180 |
Experimental study of radiation from coated turbine bladesHusain Al-taie, Arkan Khilkhal January 1990 (has links)
The specific power (or specific thrust) of modern gas turbines is much influenced by the gas temperature at turbine inlet. Even with the use of the best superalloy available and the most advanced cooling configurations, there are competitive pressures to operate engines at even higher gas temperatures. Ceramic coatings operate as thermal barriers and can allow the gas temperature to be increased by 50 to 220 K over the operating gas temperature for an uncoated turbine . It is important that the surface temperature of the blade be determined as accurately as possible. Large uncertainties as to the surface temperature require significant margins for safe operation . Blade surface temperatures can be determined with an accuracy of 10 K using radiation pyrometry and about'30 to 40 K by calculating the blade temperature based on---gas temperature measurement of the exhaust gas plane. This'- makes pyrometry an attractive option for advanced high temperature gas turbines . However, there is little experience in measuring surface temperatures of blades coated with ceramic coatings. There is evidence that the. radiation signal picked up by the pyrometer will not only depend on the surface temperature but also on a number of optical properties of the coating. Important among these are the emissivity of the coating and whether the coating is translucent. Parameters affecting this are the coating material, coating surface finish, coating thickness and whether or not a bond coat is used . This work explores these variables in a rig that simulates the conditions within a turbine stage of a gas turbine engine. In which six thermal barrier coating systems were tested. These systems are of current interest to gas turbine manufacturers and users. They include the latest advances in coating technology. Four stabilized zirconia systems and two alumina based systems were tested. It was found experimentally that the surface emissivity of these coating systems was invariant over the range 873 to 1023 K surface temperature. It was found that the use of different stabilizers did not affect the surface spectral emissivity. In further experiments six turbine wheels were coated with these systems and tested at turbine entry temperatures of 973, 1073, and 1173 K. It was found that the blade surface temperature was function of the coating material, coating thickness and turbine entry temperature. The blade surface temperature was also function of the blade height being maximum at the blade tip and minimum at the blade root . It was found that the C-YPSZ was better insulator than the rest of the systems. Whilst the blades coated with zirconia based systems suffered minor loss near the edges, the two alumina based systems were lost from more than a blade during the test. This coating loss was picked up by. the pyrometer . Analysis shows that the measured blade surface temperature was within 10 K of that calculated. The use of 0.3 mm of C-YPSZ on air cooled turbine blades caused 250 K surface temperature increase and 270 K metal temperature decrease for turbine entry temperature of 1673 K. The metal temperature reduction was as high as 310 K for coating thickness of 0.5 mm.
|
Page generated in 0.0473 seconds