• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 795
  • 266
  • 113
  • 113
  • 87
  • 32
  • 24
  • 22
  • 20
  • 14
  • 14
  • 11
  • 5
  • 4
  • 4
  • Tagged with
  • 1981
  • 583
  • 534
  • 510
  • 321
  • 268
  • 232
  • 223
  • 216
  • 185
  • 180
  • 175
  • 173
  • 149
  • 148
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Development of Advanced Internal Cooling Technologies for Gas Turbine Airfoils under  Stationary and Rotating Conditions

Singh, Prashant 18 July 2017 (has links)
Higher turbine inlet temperatures (TIT) are required for higher overall efficiency of gas turbine engines. Due to the constant push towards achieving high TIT, the heat load on high pressure turbine components has been increasing with time. Gas turbine airfoils are equipped with several sophisticated cooling technologies which protect them from harsh external environment and increase their operating life and reduce the maintenance cost. The turbine airfoils are coated with thermal barrier coatings (TBCs) and the external surface is protected by film cooling. The internals of gas turbine blades are cooled by relatively colder air bled off from the compressor discharge. Gas turbine internals can be divided into three broad segments – Leading edge section, (2) mid-chord section and (3) trailing edge section. The leading edge of the airfoil is subjected to extreme heat loads due to hot main gas stagnation and high turbulence intensity of the combustor exit gases. The leading edge is typically cooled by jet impingement which cross-over the rib turbulators in the feed chamber. The mid-chord section of the turbine airfoils have serpentine passages connected via. 180° bends, and they feature turbulence promotors which enhance the heat exchange rates between the coolant and the internal walls of the airfoil. The trailing edge section is typically cooled by array of pin fins. On one hand, the coolant routed through the internal passages of turbine airfoil help maintain the airfoil temperatures within safe limits of operation, the cooled air comes at a cost of loss of high pressure air from the compressor section. The aim of this study is to develop internal cooling concepts which have high thermal hydraulic performance, i.e. to gain high levels heat transfer enhancement due to cooling concepts at lower pumping power requirements. Experimental and numerical studies have been carried out and new rib turbulator designs such as Criss-Cross pattern, compound channels featuring uniquely organized ribs and dimples, novel jet impingement hole shapes have been developed which have high thermal-hydraulic performance. Further, gas turbine blades rotate at high rotational speeds. The internal flow routed thought the serpentine passages are subjected to Coriolis and centrifugal buoyancy forces. The combined effects of these forces results in enhancement and reduction in heat transfer on the pressure side and suction side internal walls. This leads to non-uniformity in the heat transfer enhancement which leads to non-uniform cooling and increase in the sites of high and low internal wall temperatures. Development of cooling concepts which have high thermal hydraulic performance under non-rotating conditions is important, however, under rotation, the heat transfer characteristics of the internal passages is significantly different in an unfavorable way. So the aim of the turbine cooling research is to have concepts which provide highly efficient and uniform cooling. The negative effects of rotation has been addressed in this study and new orientation of two-pass cooling channels has been presented which utilizes the rotational energy in favor of heat transfer enhancement on both pressure and suction side internal walls. Present study has led to several new cooling concepts which are efficient under both stationary and rotating conditions. / Ph. D. / Higher turbine inlet temperatures lead to higher overall efficiency of gas turbines. Hence, the high pressure stages of turbine sections, which are downstream of the combustor section, have significant thermal load. The turbine inlet temperatures can be as high as 1700°C and turbine airfoil material melting point temperature is around 1000°C. In order to protect the blade for the harsh environment, relatively colder air (~700°C) bled off from the compressor discharge is routed through the internal cooling passages of turbine airfoils. The coolant bled from the compressor section contributes the reduction in the performance of the engine. Hence, the aim of the turbine cooling research is to achieve high rates of heat transfer at relatively lower pumping power requirements. In order to enhance the heat transfer rates from between the hot internal walls of airfoil and the coolant, turbulence promotors are typically installed in the mid-section of the airfoil which features serpentine passages interconnected by 180° bends. Present study is focused on development of highly efficient concepts for internal flows in turbine airfoils. The other aspect of internal cooling research is focused on characterization of heat transfer under rotating conditions. Coriolis force and centrifugal buoyancy forces lead to non-uniform cooling and the heat transfer rates are significantly different under rotating conditions compared to non-rotating conditions. Present study utilizes detailed measurements of heat transfer coefficients under rotating conditions for the development of cooling designs for two-pass ribbed channels where rotational effects can be used in favor of heat transfer enhancement, leading to enhanced and more uniform cooling of internal walls.
202

Effect of Blowing Ratio on the Nusselt Number and Film Cooling Effectiveness Distributions of a Showerhead Film Cooled Blade in a Transonic Cascade

Guy, Ashley Ray 31 July 2007 (has links)
This paper investigates the effect of blowing ratio on the film cooling performance of a showerhead film cooled first stage turbine blade. The blade was instrumented with double-sided thin film heat flux gages to experimentally characterize the Nusselt number and film cooling effectiveness distributions over the surface of the blade. The blade was arranged in a two-dimensional, linear cascade within a transonic, blowdown type wind tunnel. The wind tunnel freestream conditions were varied over two exit Mach numbers, Me=0.78 and Me=1.01, with an inlet freestream turbulence intensity of 12% , with an integral length scale normalized by blade chord of 0.26 generated by a passive, mesh turbulence grid. The coolant conditions were varied by changing the ratio of coolant to freestream mass flux, blowing ratio, over three values, BR=0.60, 1.0, and 1.5 while keeping a density ratio of 1.7. Experimental results show that ingestion of freestream flow into the showerhead cooling plenum can occur below a blowing ratio of 0.6. Film cooling increases Nusselt number over the uncooled case and increasing the blowing ratio also increases Nusselt number. At a blowing ratio of 1.5 and Me=1.01 a large drop in effectiveness just downstream of injection on both the pressure and suction surfaces is evidence of jet liftoff. The blowing ratio of 1.0 was found to have superior heat load reduction over the blade surface at both freestream conditions tested. The blowing ratio of 1.0 reduced the heat load by as much as 39% and 32% at Me=0.78 and 1.01, respectively. / Master of Science
203

Experimental investigation of film cooling and thermal barrier coatings on a gas turbine vane with conjugate heat transfer effects

Kistenmacher, David Alan 19 November 2013 (has links)
In the United States, natural gas turbine generators account for approximately 7% of the total primary energy consumed. A one percent increase in gas turbine efficiency could result in savings of approximately 30 million dollars for operators and, subsequently, electricity end-users. The efficiency of a gas turbine engine is tied directly to the temperature at which the products of combustion enter the first stage, high-pressure turbine. The maximum operating temperature of the turbine components’ materials is the major limiting factor in increasing the turbine inlet temperature. In fact, current turbine inlet temperatures regularly exceed the melting temperature of the turbine vanes through advanced vane cooling techniques. These cooling techniques include vane surface film cooling, internal vane cooling, and the addition of a thermal barrier coating (TBC) to the exterior of the turbine vane. Typically, the performance of vane cooling techniques is evaluated using the adiabatic film effectiveness. However, the adiabatic film effectiveness, by definition, does not consider conjugate heat transfer effects. In order to evaluate the performance of internal vane cooling and a TBC it is necessary to consider conjugate heat transfer effects. The goal of this study was to provide insight into the conjugate heat transfer behavior of actual turbine vanes and various vane cooling techniques through experimental and analytical modeling in the pursuit of higher turbine inlet temperatures resulting in higher overall turbine efficiencies. The primary focus of this study was to experimentally characterize the combined effects of a TBC and film cooling. Vane model experiments were performed using a 10x scaled first stage inlet guide vane model that was designed using the Matched Biot Method to properly scale both the geometrical and thermal properties of an actual turbine vane. Two different TBC thicknesses were evaluated in this study. Along with the TBCs, six different film cooling configurations were evaluated which included pressure side round holes with a showerhead, round holes only, craters, a novel trench design called the modified trench, an ideal trench, and a realistic trench that takes manufacturing abilities into account. These film cooling geometries were created within the TBC layer. Each of the vane configurations was evaluated by monitoring a variety of temperatures, including the temperature of the exterior vane wall and the exterior surface of the TBC. This study found that the presence of a TBC decreased the sensitivity of the thermal barrier coating and vane wall interface temperature to changes in film coolant flow rates and changes in film cooling geometry. Therefore, research into improved film cooling geometries may not be valuable when a TBC is incorporated. This study also developed an analytical model which was used to predict the performance of the TBCs as a design tool. The analytical prediction model provided reasonable agreement with experimental data when using baseline data from an experiment with another TBC. However, the analytical prediction model performed poorly when predicting a TBC’s performance using baseline data collected from an experiment without a TBC. / text
204

Experimental and Computational Analysis of an Axial Turbine Driven by Pulsing Flow

Fernelius, Mark H. 01 April 2017 (has links)
Pressure gain combustion is a form of combustion that uses pressure waves to transfer energy and generate a rise in total pressure during the combustion process. Pressure gain combustion shows potential to increase the cycle efficiency of conventional gas turbine engines if used in place of the steady combustor. However, one of the challenges of integrating pressure gain combustion into a gas turbine engine is that a turbine driven by pulsing flow experiences a decrease in efficiency. The interaction of pressure pulses with a turbine was investigated to gain physical insights and to provide guidelines for designing turbines to be driven by pulsing flow. An experimental rig was built to compare steady flow with pulsing flow. Compressed air was used in place of combustion gases; pressure pulses were created by rotating a ball valve with a motor. The data showed that a turbine driven by full annular pressure pulses has a decrease in turbine efficiency and pressure ratio. The average decrease in turbine efficiency was 0.12 for 10 Hz, 0.08 for 20 Hz, and 0.04 for 40 Hz. The turbine pressure ratio, defined as the turbine exit total pressure divided by the turbine inlet total pressure, ranged from 0.55 to 0.76. The average decrease in turbine pressure ratio was 0.082 for 10 Hz, 0.053 for 20 Hz, and 0.064 for 40 Hz. The turbine temperature ratio and specific turbine work were constant. Pressure pulse amplitude, not frequency, was shown to be the main cause for the decrease in turbine efficiency. Computational fluid dynamics simulations were created and were validated with the experimental results. Simulations run at the same conditions as the experiments showed a decrease in turbine efficiency of 0.24 for 10 Hz, 0.12 for 20 Hz, and 0.05 for 40 Hz. In agreement with the experimental results, the simulations also showed that pressure pulse amplitude is the driving factor for decreased turbine efficiency and not the pulsing frequency. For a pulsing amplitude of 86.5 kPa, the efficiency difference between a 10 Hz and a 40 Hz simulation was only 0.005. A quadratic correlation between turbine efficiency and corrected pulse amplitude was presented with an R-squared value of 0.99. Incidence variation was shown to cause the change in turbine efficiency and a correlation between corrected incidence and corrected amplitude was established. The turbine geometry was then optimized for pulsing flow conditions. Based on the optimization results and observations, design recommendations were made for designing turbines for pulsing flow. The first design recommendation was to weight the design of the turbine toward the peak of the pressure pulse. The second design recommendation was to consider the range of inlet angles and reduce the camber near the leading edge of the blade. The third design recommendation was to reduce the blade turning to reduce the wake caused by pulsing flow. A new turbine design was created and tested following these design recommendations. The time-accurate validation simulation for a 10 Hz pressure pulse showed that the new turbine decreased the entropy generation by 35% and increased the efficiency by 0.04 (5.4%).
205

An experimental study of film cooling, thermal barrier coatings and contaminant deposition on an internally cooled turbine airfoil model

Davidson, Frederick Todd 13 July 2012 (has links)
Approximately 10% of all energy consumed in the United States is derived from high temperature gas turbine engines. As a result, a 1% increase in engine efficiency would yield enough energy to satisfy the demands of approximately 1 million homes and savings of over $800 million in fuel costs per year. Efficiency of gas turbine engines can be improved by increasing the combustor temperature. Modern engines now operate at temperatures that far exceed the material limitations of the metals they are comprised of in the pursuit of increased thermal efficiency. Various techniques to thermally protect the turbine components are used to allow for safe operation of the engines despite the extreme environments: film cooling, internal convective cooling, and thermal barrier coatings. Historically, these thermal protection techniques have been studied separately without account for any conjugate effects. The end goal of this work is to provide a greater understanding of how the conjugate effects might alter the predictions of thermal behavior and consequently improve engine designs to pursue increased efficiency. The primary focus of this study was to complete the first open literature, high resolution experiments of a modeled first stage turbine vane with both active film cooling and a simulated thermal barrier coating (TBC). This was accomplished by scaling the thermal behavior of a real engine component to the model vane using the matched Biot number method. Various film cooling configurations were tested on both the suction and pressure side of the model vane including: round holes, craters, traditional trenches and a novel modified trench. IR thermography and ribbon thermocouples were used to measure the surface temperature of the TBC and the temperature at the interface of the TBC and vane wall, respectively. This work found that the presence of a TBC significantly dampens the effect of altering film cooling conditions when measuring the TBC interface temperature. This work also found that in certain conditions adiabatic effectiveness does not provide an accurate assessment of how a film cooling design may perform in a real engine. An additional focus of this work was to understand how contaminant deposition alters the cooling performance of a vane with a TBC. This work focused on quantifying the detrimental effects of active deposition by seeding the mainstream flow of the test facility with simulated molten coal ash. It was found that in most cases, except for round holes operating at relatively high blowing ratios, the performance of film cooling was negatively altered by the presence of contaminant deposition. However, the cooling performance at the interface of the TBC and vane wall actually improved with deposition due to the additional thermal resistance that was added to the exterior surface of the model vane. / text
206

Návrh turbínové skříně pro diagonální turbínové kolo / Design of the turbine housing for diagonal turbine wheel

Přibyl, Zdeněk January 2015 (has links)
The aim of this thesis is to focus on an application of mixed flow turbine wheel for charging diesel powered combustion engine in a van and to give a summary about current technologies used for charging internal combustion engines. Output of this thesis should be a package study with a few design layouts for the application mentioned above, including models prepared for rapid prototyping. Another part of the package study is a simulation of thermal stress and final deformation of turbine heat shroud. Design layout should contain as many production parts as possible.
207

An investigation into the influences on equipment life cycle and materials behaviour during life extension period in fossil fuelled and nuclear fuelled power plants

Hahn, Wolfgang Anton January 2015 (has links)
Low pressure steam turbine last stage blade behaviour was investigated and researched over duration of this PhD project period. The aim of the research was to enhance the life of last stage blades by investigation and mitigation of the accumulative damage throughout the life of the turbine blade. The research was mainly broken down in to three main themes covering erosion, High Cycle Fatigue in industrial service and High Cycle Fatigue under laboratory conditions. The three themes were then further analysed during the research analysis for correlation and the extent of accumulative damage contribution during each stage. An accumulative damage model was constructed together with mathematical expressions for each stage of accumulative damage. The erosion damage model was constructed first and separately, followed by a separate damage model for crack initiation and propagation. After this a combined damage model was constructed to represent accumulative damage throughout the turbine blade lifecycle. After the damage mechanisms were researched and understood, a damage mitigation model was constructed consisting of primary damage mechanisms and secondary damage mechanisms. The primary damage mechanisms were then investigated further and a life extension technique developed to increase turbine blade life by reducing damage rates per turbine start, giving more starts life capability to the last stage blades. The secondary mitigation mechanisms was not covered in this project and regarded as future work under the low pressure turbine life extension possibilities. The research work also gave a spin off which allowed the author to conduct and finish a separate piece of work of designing the problem out through redesigning the turbine blade and condenser space in conjunction with leading experts from the industry.
208

Hydrodynamics and drive-train dynamics of a direct-drive floating wind turbine

Sethuraman, Latha January 2014 (has links)
Floating wind turbines (FWTs) are considered a new lease of opportunity for sustaining growth from offshore wind energy. In recent years, several new concepts have emerged, with only a few making it to demonstration or pre-commercialisation stages. Amongst these, the spar-buoy based FWT has been extensively researched concept with efforts to optimise the dynamic response and reduce the costs at acceptable levels of performance. Yet, there exist notable lapses in understanding of these systems due to lack of established design standards, operational experience, inaccurate modelling and inconsistent reporting that hamper the design process. Previous studies on spar-buoy FWTs have shown inconsistencies in reporting hydrodynamic response and adopted simplified mooring line models that have failed to capture the coupled hydrodynamic behaviour accurately. At the same time, published information on drive-trains for FWTs is scarce and limited to geared systems that suffer from reliability issues. This research was aimed at filling the knowledge gaps with regard to hydrodynamic modelling and drive-train research for the spar-buoy FWT. The research proceeds in three parts, beginning with numerical modelling and experimental testing of a stepped spar-buoy FWT. A 1:100 scale model was constructed and tested in the University of Edinburgh’s curved wave tank for various regular and irregular sea states. The motion responses were recorded at its centre of mass and nacelle locations. The same motions were also simulated numerically using finite element method based software, OrcaFlex for identical wave conditions. The hydrodynamic responses were evaluated as Response Amplitude Operator (RAO) and compared with numerical simulations. The results showed very good agreement and the numerical model was found to better capture the non-linearities from mooring lines. A new design parameter, Nacelle Magnification Factor, was introduced to quantify coupled behaviour of the system. This could potentially encourage a new design approach to optimising floating wind turbine systems for a given hub height. The second part of the research was initiated by identification of special design considerations for drive-trains to be successfully integrated into FWTs. A comparative assessment of current state of the art showed good potential for directdrive permanent magnet synchronous generators (PMSG). A radial flux topology of the direct-drive PMSG was further examined to verify its suitability to FWT. The generator design was qualified based on its structural integrity and ability to ensure minimal overall impact. The results showed that limiting the generator weight without compromising air-gap tolerances or tower-foundation upgrades was the biggest challenge. Further research was required to verify the dynamic response and component loading to be at an acceptable level. The concluding part of research investigated the dynamic behaviour of the directdrive generator and the various processes that controlled its performance in a FWT. For this purpose, a fully coupled aero-hydro-servo-elastic model of direct-drive FWT was developed. This exercise yet again highlighted the weight challenge imposed by the direct-drive system entailing extra investment on structure. The drive-train dynamics were analysed using a linear combination of multi-body simulation tools namely HAWC2 and SIMPACK. Shaft misalignment, its effect on unbalanced magnetic pull and the main bearing loads were examined. The responses were found to be within acceptable limits and the FWT system does not appreciably alter the dynamics of a direct-drive generator. Any extra investment on the structure is expected to be outweighed by the superior performance and reliability with the direct-drive generator. In summary, this research proposes new solutions to increase the general understanding of hydrodynamics of FWTs and encourages the implementation of direct-drive generators for FWTs. It is believed that the solutions proposed through this research can potentially help address the design challenges of FWTs.
209

Dynamic response analysis of an offshore wind turbine supported by a moored semi-submersible platform

Soni, Mohit 12 September 2014 (has links)
Wind energy, the fastest growing source of renewable energy, is a promising resource for power generation. Offshore wind energy, in particular,offers favorable conditions for power generation—high winds with low turbulence, minimal visual impacts and high generation capacities. Offshore wind turbines mounted on floating platforms are the most economical and viable solution for deep water sites. A semi-submersible platform is an appropriate floating platform for a deep water site, providing stability through high water-plane area. In the wind energy industry, there has been continuing interest in developing larger turbines. At Sandia National Laboratories (SNL), efforts have led to the development of a 13.2 MW wind turbine model with blades 100 meters in length, significantly larger than commercially available blades at present. Such a large wind turbine needs to be carefully analyzed and studied before it can be considered suitable for commercial purposes. The dynamic analysis of the SNL 13.2 MW wind turbine mounted on a moored semi-submersible platform is the subject of this study. This integrated 13.2 MW wind turbine system has been developed and its various physical properties have been studied in this and another associated study. The semi-submersible platform is developed using various modeling tools. For the wind turbine-platform system model developed, dynamic analyses are performed using simulation tools to understand the coupled behavior of the wind turbine and the platform. A reference site is chosen to define the environmental conditions, based on which the short-term extreme response of the offshore wind turbine is estimated. The system is loaded with selected combinations of winds and waves to assess controlling combinations of wind speeds and wave heights that influence the response. The influence of changes in model parameters on overall response is also studied. / text
210

Accuracy of turbocharged SI-engine simulations

Westin, Fredrik January 2002 (has links)
<p>This licentiate thesis deals mainly with modelling ofturbocharged SIengines. A model of a 4-cylinder engine was runin both steady state and transient conditions and the resultswere compared to measured data. Large differences betweenmeasurements and simulations were detected and the reasons forthis discrepancy were investigated. The investigation showedthat it was the turbocharger turbine model that performed in anon-optimal way. To cope with this, the turbine model containedparameters, which could be adjusted so that the model resultsmatched measured data. However, it was absolutely necessary tohave measured data to match against. It was thus concluded thatthe predictivity of the software tool was too poor to try topredict the performance of various boosting systems. Thereforemeans of improving the modelling procedure were investigated.To enable such an investigation a technique was developed tomeasure the instantaneous power output from, and efficiency of,the turbine when the turbocharger was used on the engine.</p><p>The project’s initial aim was to predict, throughsimulations, the best way to boost a downsized SI-engine with avery high boost-pressure demand. The first simulation run on astandard turbocharged engine showed that this could not be donewith any high accuracy. However, a literature study was madethat presents various different boosting techniques that canproduce higher boost pressure in a larger flow-range than asingle turbocharger, and in addition, with smallerboost-pressure lag.</p><p><b>Key words:</b>boosting, turbocharging, supercharging,modelling, simulation, turbine, pulsating flow, unsteadyperformance, SI-engine, measurement accuracy</p>

Page generated in 0.0323 seconds