Spelling suggestions: "subject:"[een] VARIATIONAL"" "subject:"[enn] VARIATIONAL""
151 |
Height and Gradient from ShadingHorn, Berthold K.P. 01 May 1989 (has links)
The method described here for recovering the shape of a surface from a shaded image can deal with complex, wrinkled surfaces. Integrability can be enforced easily because both surface height and gradient are represented. The robustness of the method stems in part from linearization of the reflectance map about the current estimate of the surface orientation at each picture cell. The new scheme can find an exact solution of a given shape-from-shading problem even though a regularizing term is included. This is a reflection of the fact that shape-from-shading problems are not ill-posed when boundary conditions are available or when the image contains singular points.
|
152 |
Indefinite problems for a homogeneous perturbation of the p-laplacian / Problèmes indéfinis pour une perturbation homogène du p-laplacienRamos Quoirin, Humberto 22 October 2009 (has links)
Note de l'administrateur du service : le résumé de cette thèse est disponible dans le fichier déposé par l'auteur. Il ne peut techniquement pas être placé sous cette rubrique, dans la mesure où il contient des formules mathématiques avec des caractères grecs.
|
153 |
Variational problems on supermanifoldsHanisch, Florian January 2011 (has links)
In this thesis, we discuss the formulation of variational problems on supermanifolds. Supermanifolds incorporate bosonic as well as fermionic degrees of freedom. Fermionic fields take values in the odd part of an appropriate Grassmann algebra and are thus showing an anticommutative behaviour. However, a systematic treatment of these Grassmann parameters requires a description of spaces as functors, e.g. from the category of Grassmann algberas into the category of sets (or topological spaces, manifolds). After an introduction to the general ideas of this approach, we use it to give a description of the resulting supermanifolds of fields/maps. We show that each map is uniquely characterized by a family of differential operators of appropriate order. Moreover, we demonstrate that each of this maps is uniquely characterized by its component fields, i.e. by the coefficients in a Taylor expansion w.r.t. the odd coordinates. In general, the component fields are only locally defined. We present a way how to circumvent this limitation. In fact, by enlarging the supermanifold in question, we show that it is possible to work with globally defined components.
We eventually use this formalism to study variational problems. More precisely, we study a super version of the geodesic and a generalization of harmonic maps to supermanifolds. Equations of motion are derived from an energy functional and we show how to decompose them into components. Finally, in special cases, we can prove the existence of critical points by reducing the problem to equations from ordinary geometric analysis. After solving these component equations, it is possible to show that their solutions give rise to critical points in the functor spaces of fields. / In dieser Dissertation wird die Formulierung von Variationsproblemen auf Supermannigfaltigkeiten diskutiert. Supermannigfaltigkeiten enthalten sowohl bosonische als auch fermionische Freiheitsgrade. Fermionische Felder nehmen Werte im ungeraden Teil einer Grassmannalgebra an, sie antikommutieren deshalb untereinander. Eine systematische Behandlung dieser Grassmann-Parameter erfordert jedoch die Beschreibung von Räumen durch Funktoren, z.B. von der Kategorie der Grassmannalgebren in diejenige der Mengen (der topologischen Räume, Mannigfaltigkeiten, ...). Nach einer Einführung in das allgemeine Konzept dieses Zugangs verwenden wir es um eine Beschreibung der resultierenden Supermannigfaltigkeit der Felder bzw. Abbildungen anzugeben. Wir zeigen, dass jede Abbildung eindeutig durch eine Familie von Differentialoperatoren geeigneter Ordnung charakterisiert wird. Darüber hinaus beweisen wir, dass jede solche Abbildung eineindeutig durch ihre Komponentenfelder, d.h. durch die Koeffizienten einer Taylorentwickelung bzgl. von ungeraden Koordinaten bestimmt ist. Im Allgemeinen sind Komponentenfelder nur lokal definiert. Wir stellen einen Weg vor, der diese Einschränkung umgeht: Durch das Vergrößern der betreffenden Supermannigfaltigkeit ist es immer möglich, mit globalen Koordinaten zu arbeiten.
Schließlich wenden wir diesen Formalismus an, um Variationsprobleme zu untersuchen, genauer betrachten wir eine super-Version der Geodäte und eine Verallgemeinerung von harmonischen Abbildungen auf Supermannigfaltigkeiten. Bewegungsgleichungen werden von Energiefunktionalen abgeleitet und wir zeigen, wie sie sich in Komponenten zerlegen lassen. Schließlich kann in Spezialfällen die Existenz von kritischen Punkten gezeigt werden, indem das Problem auf Gleichungen der gewöhnlichen geometrischen Analysis reduziert wird. Es kann dann gezeigt werden, dass die Lösungen dieser Gleichungen sich zu kritischen Punkten im betreffenden Funktor-Raum der Felder zusammensetzt.
|
154 |
Statistical energy analysis and variational principles for the prediction of sound transmission in multilayered structuresBarbagallo, Mathias January 2013 (has links)
Multilayered structures have many application in industry and society: they have peculiar properties and serve a variety of purposes, like structural support, thermal insulation, vibrational and acoustic isolation. This thesis concerns the prediction of sound transmission in multilayered structures. Two problems are herein investigated: the transmission of energy through structures and the transmission of energy along structures. The focus of the analysis is on the mid to high frequency range. To predict sound transmission in these structures, statistical energy analysis (SEA) is used.SEA models are devised for the prediction of the sound reduction index for two kinds of multilayered structures, double-walls used in buildings and trim-panels in vehicles; the double-walls comprise an air cavity in between flat plasterboard or glass plates, whereas the trim-panels a porous layer in between curved aluminium and rubber layers. The SEA models are based upon the wave-types carrying energy. The novelty in these SEAs is an element describing the waves in the air cavity, or in the porous layer, fully coupled to the mass-impeded external layers. Compared to measurements, the proposed SEA performs well: for double-walls, it performs better than previous models; for trim-panels, it is an original result. The parameters of the new SEA element, such as modal density, are derived from the coupling equations describing the fully coupled waves. For double-walls, these equations are derived via Newton's laws. For trim-panels, a variational approach based upon a modified Hamilton's principle valid for non-conservative systems is preferred, because it is a powerful machinery for deriving equations of motion and coupling conditions of a medium as complex as the porous layer. The modified Hamilton's principle for non-conservative systems is based upon a self-adjoint functional analogous to the Lagrangian, inspired by Morse and Feshbach's construction. A self-adjoint variational principle for Biot's equations in the displacement formulation is devised. An equivalent mixed formulation is obtained changing the coordinates of the displacement formulation via Lagrange multipliers. From this mixed formulation, the Lagrangian for a porous material with a limp frame is derived, which yields the continuity of the total displacement of the porous layer. Lagrange multipliers help to obtain the correct coupling functionals between a porous material and a solid. The Lagrange multipliers introducing the continuity of the frame and the solid displacements equal the traction of the in-vacuo frame, thus disappearing if the latter is limp. Measurements to gather material parameters for a Biot model of the porous layer have been conducted.The effects of spatial energy decay in the transmission along structures predicted by SEA is studied: a major effect is the increased relevance of indirect coupling loss factors between SEA elements. This may jeopardize the usefulness of SEA at higher frequencies. / <p>QC 20130218</p>
|
155 |
Surface reconstruction using variational interpolationJoseph Lawrence, Maryruth Pradeepa 24 November 2005
Surface reconstruction of anatomical structures is an integral part of medical modeling. Contour information is extracted from serial cross-sections of tissue data and is stored as "slice" files. Although there are several reasonably efficient triangulation algorithms that reconstruct surfaces from slice data, the models generated from them have a jagged or faceted appearance due to the large inter-slice distance created by the sectioning process. Moreover, inconsistencies in user input aggravate the problem. So, we created a method that reduces inter-slice distance, as well as ignores the inconsistencies in the user input. Our method called the piecewise weighted implicit functions, is based on the approach of weighting smaller implicit functions. It takes only a few slices at a time to construct the implicit function. This method is based on a technique called variational interpolation. <p> Other approaches based on variational interpolation have the disadvantage of becoming unstable when the model is quite large with more than a few thousand constraint points. Furthermore, tracing the intermediate contours becomes expensive for large models. Even though some fast fitting methods handle such instability problems, there is no apparent improvement in contour tracing time, because, the value of each data point on the contour boundary is evaluated using a single large implicit function that essentially uses all constraint points. Our method handles both these problems using a sliding window approach. As our method uses only a local domain to construct each implicit function, it achieves a considerable run-time saving over the other methods. The resulting software produces interpolated models from large data sets in a few minutes on an ordinary desktop computer.
|
156 |
Automatic segmentation of wall structures from cardiac imageszHu, LiangJia 18 December 2012 (has links)
One important topic in medical image analysis is segmenting wall structures from different cardiac medical imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). This task is typically done by radiologists either manually or semi-automatically, which is a very time-consuming process. To reduce the laborious human efforts, automatic methods have become popular in this research. In this thesis, features insensitive to data variations are explored to segment the ventricles from CT images and extract the left atrium from MR images. As applications, the segmentation results are used to facilitate cardiac disease analysis. Specifically,
1. An automatic method is proposed to extract the ventricles from CT images by integrating surface decomposition with contour evolution techniques. In particular, the ventricles are first identified on a surface extracted from patient-specific image data. Then, the contour evolution is employed to refine the identified ventricles. The proposed method is robust to variations of ventricle shapes, volume coverages, and image quality.
2. A variational region-growing method is proposed to segment the left atrium from MR images. Because of the localized property of this formulation, the proposed method is insensitive to data variabilities that are hard to handle by globalized methods.
3. In applications, a geometrical computational framework is proposed to estimate the myocardial mass at risk caused by stenoses. In addition, the segmentation of the left atrium is used to identify scars for MR images of post-ablation.
|
157 |
Variational Spectral AnalysisSendov, Hristo January 2000 (has links)
We present results on smooth and nonsmooth variational properties of {it symmetric} functions of the eigenvalues of a real symmetric matrix argument, as well as {it absolutely symmetric} functions of the singular values of a real rectangular matrix. Such results underpin the theory of optimization problems involving such functions. We answer the question of when a symmetric function of the eigenvalues allows a quadratic expansion around a matrix, and then the stronger question of when it is twice differentiable. We develop simple formulae for the most important nonsmooth subdifferentials of functions depending on the singular values of a real rectangular matrix argument and give several examples. The analysis of the above two classes of functions may be generalized in various larger abstract frameworks. In particular, we investigate how functions depending on the eigenvalues or the singular values of a matrix argument may be viewed as the composition of symmetric functions with the roots of {it hyperbolic polynomials}. We extend the relationship between hyperbolic polynomials and {it self-concordant barriers} (an extremely important class of functions in contemporary interior point methods for convex optimization) by exhibiting a new class of self-concordant barriers obtainable from hyperbolic polynomials.
|
158 |
Stability Analysis of Phase-Locked Bursting in Inhibitory Neuron NetworksJalil, Sajiya Jesmin 07 August 2012 (has links)
Networks of neurons, which form central pattern generators (CPGs), are important for controlling animal behaviors. Of special interest are configurations or CPG motifs composed of reciprocally inhibited neurons, such as half-center oscillators (HCOs). Bursting rhythms of HCOs are shown to include stable synchrony or in-phase bursting. This in-phase bursting can co-exist with anti-phase bursting, commonly expected as the single stable state in HCOs that are connected with fast non-delayed synapses. The finding contrasts with the classical view that reciprocal inhibition has to be slow or time-delayed to synchronize such bursting neurons. Phase-locked rhythms are analyzed via Lyapunov exponents estimated with variational equations, and through the convergence rates estimated with Poincar\'e return maps. A new mechanism underlying multistability is proposed that is based on the spike interactions, which confer a dual property on the fast non-delayed reciprocal inhibition; this reveals the role of spikes in generating multiple co-existing phase-locked rhythms. In particular, it demonstrates that the number and temporal characteristics of spikes determine the number and stability of the multiple phase-locked states in weakly coupled HCOs. The generality of the multistability phenomenon is demonstrated by analyzing diverse models of bursting networks with various inhibitory synapses; the individual cell models include the reduced leech heart interneuron, the Sherman model for pancreatic beta cells, the Purkinje neuron model and Fitzhugh-Rinzel phenomenological model. Finally, hypothetical and experiment-based CPGs composed of HCOs are investigated. This study is relevant for various applications that use CPGs such as robotics, prosthetics, and artificial intelligence.
|
159 |
Efficient Analysis for Nonlinear Effects and Power Handling Capability in High Power HTSC Thin Film Microwave CircuitsTang, Hongzhen January 2000 (has links)
In this study two nonlinear analysis methods are proposed for investigation of nonlinear effects of high temperature superconductive(HTSC) thin film planar microwave circuits. The MoM-HB combination method is based on the combination formulation of the moment method(MoM) and the harmonic balance(HB) technique. It consists of linear and nonlinear solvers. The power series method treats the voltages at higher order frequencies as the excitations at the corresponding frequencies, and the higher order current distributions are then obtained by using the moment method again. The power series method is simple and fast for finding the output power at higher order frequencies. The MoM-HB combination method is suitable for strong nonlinearity, and it can be also used to find the fundamental current redistribution, conductor loss, and the scattering parameters variation at the fundamental frequency. These two proposed methods are efficient, accurate, and suitable for distributed-type HTSC nonlinearity. They can be easily incorporated into commercial EM CAD softwares to expand their capabilities. These two nonlinear analysis method are validated by analyzing a HTSC stripline filter and HTSC antenna dipole circuits. HTSC microstrip lines are then investigated for the nonlinear effects of HTSC material on the current density distribution over the cross section and the conductor loss as a function of the applied power. The HTSC microstrip patch filters are then studied to show that the HTSCinterconnecting line could dominate the behaviors of the circuits at high power. The variation of the transmission and reflection coefficients with the applied power and the third output power are calculated. The HTSC microstrip line structure with gilded edges is proposed for improving the power handling capability of HTSC thin film circuit based on a specified limit of harmonic generation and conductor loss. A general analysis approach suitable for any thickness of gilding layer is developed by integrating the multi-port network theory into aforementioned proposed nonlinear analysis methods. The conductor loss and harmonic generation of the gilded HTSC microstrip line are investigated.
|
160 |
Variational Spectral AnalysisSendov, Hristo January 2000 (has links)
We present results on smooth and nonsmooth variational properties of {it symmetric} functions of the eigenvalues of a real symmetric matrix argument, as well as {it absolutely symmetric} functions of the singular values of a real rectangular matrix. Such results underpin the theory of optimization problems involving such functions. We answer the question of when a symmetric function of the eigenvalues allows a quadratic expansion around a matrix, and then the stronger question of when it is twice differentiable. We develop simple formulae for the most important nonsmooth subdifferentials of functions depending on the singular values of a real rectangular matrix argument and give several examples. The analysis of the above two classes of functions may be generalized in various larger abstract frameworks. In particular, we investigate how functions depending on the eigenvalues or the singular values of a matrix argument may be viewed as the composition of symmetric functions with the roots of {it hyperbolic polynomials}. We extend the relationship between hyperbolic polynomials and {it self-concordant barriers} (an extremely important class of functions in contemporary interior point methods for convex optimization) by exhibiting a new class of self-concordant barriers obtainable from hyperbolic polynomials.
|
Page generated in 0.0505 seconds