Spelling suggestions: "subject:"[een] VARIATIONAL"" "subject:"[enn] VARIATIONAL""
111 |
Modeling of Contact in Orthotropic Materials using Variational Asymptotic MethodEswaran, Jai Kiran January 2016 (has links) (PDF)
Composites are materials which cater to the present and future needs of many demanding industries, such as aerospace, as they are weight-sensitive for a given requirement of strength and stiff ness, corrosion resistant, potentially multi-functional and can be tailored according to the application. However, they are in particular difficult to join as they cannot be easily machined, without introducing damages which can eventually grow. Any structure is as strong as its weakest joint. Most of the joints belong to the category of mechanically-fastened joints and they pose enormous challenges in modeling due to contact phenomena, nonlinearity and stress concentration factors. It is therefore a necessity to construct an efficient model that would include all the relevant contact phenomena in the joints, as it has been pointed out in literature that damage typically initiates near the joint holes.
The focus of this work is to describe the construction of an asymptotically-correct model using the Variational Asymptotic Method (VAM). Amongst its many potential applications, VAM is a well-established analytical tool for obtaining the stress and strain fields for beams and shells. The methodology takes advantage of the small parameter that is inherent in the problem, such as the ratio of certain characteristic dimensions of the structure. In shells and beams, VAM takes advantage of the dimension-based small parameter(s), thereby splitting the problem into 2-D + 1-D (for beams) and 1-D + 2-D (for shells), in turn offering very high computational efficiency with very little loss of accuracy compared to dimensionally unreduced 3-D models. In this work, the applicability of VAM is extended to two-dimensional (2-D) and three-dimensional (3-D) frictionless contact problems. Since a generalised VAM model for contact has not been pursued before, the `phantom0 step is adopted for both 2-D and 3-D models.
The development of the present work starts with the construction of a 2-D model involving a large rectangular plate being pressed against a rigid frictionless pin. The differential equations governing the problem and the associated boundary conditions are obtained by minimizing the reduced strain energy, augmented with the appropriate gap function, by using a penalty method. The model is developed for both isotropic and orthotropic cases. The boundary value problem is solved numerically and the displacement field obtained is compared with the one obtained using commercial software (ABAQUSr) for validation at critical regions such as the contact surfaces. Banking on the validation of the 2-D model, a 3-D model with a pin and a finite annular cylinder was constructed. The strain energy for the finite cylinder was derived using geometrically exact 3-D kinematics and VAM was applied leading to the reduction in the strain energy for isotropic and orthotropic materials in rectangular and cylindrical co-ordinates. As in the 2-D case, the reduced strain energy, subject to the inequality constraint of the gap function, is minimized with respect to the displacement field and the corresponding boundary value problem is solved numerically. The displacements of the contact surface and the top surface of the annular cylinder are compared with those from ABAQUS and thus validated. The displacement fields obtained using the current 2-D and 3-D models show very good agreement with those from commercial finite element software packages. The model could be re ned further by using the gap function derived in this work and applying it to a plate model based on VAM, which could be explored in the future.
|
112 |
Algorithmic detection of conserved quantities of finite-difference schemes for partial differential equationsKrannich, Friedemann 04 1900 (has links)
Many partial differential equations (PDEs) admit conserved quantities like mass or energy. Those quantities are often essential to establish well-posed results. When approximating a PDE by a finite-difference scheme, it is natural to ask whether related discretized quantities remain conserved under the scheme. Such conservation may establish the stability of the numerical scheme. We present an algorithm for checking the preservation of a polynomial quantity under a polynomial finite-difference scheme. In our algorithm, schemes can be explicit or implicit, have higher-order time and space derivatives, and an arbitrary number of variables. Additionally, we present an algorithm for, given a scheme, finding conserved quantities. We illustrate our algorithm by studying several finite-difference schemes.
|
113 |
Deducting Conserved Quantities for Numerical Schemes using Parametric Groebner SystemsMajrashi, Bashayer 05 1900 (has links)
In partial differential equations (PDEs), conserved quantities like mass and momentum are fundamental to understanding the behavior of the described physical
systems. The preservation of conserved quantities is essential when using numerical
schemes to approximate solutions of corresponding PDEs. If the discrete solutions
obtained through these schemes fail to preserve the conserved quantities, they may
be physically meaningless and unreliable.
Previous approaches focused on checking conservation in PDEs and numerical
schemes, but they did not give adequate attention to systematically handling parameters. This is a crucial aspect because many PDEs and numerical schemes have parameters that need to be dealt with systematically. Here, we investigate if the discrete
analog of a conserved quantity is preserved under the solution induced by a parametric finite difference method. In this thesis, we modify and enhance a pre-existing
algorithm to effectively and reliably deduce conserved quantities in the context of
parametric schemes, using the concept of comprehensive Groebner systems.
The main contribution of this work is the development of a versatile algorithm
capable of handling various parametric explicit and implicit schemes, higher-order
derivatives, and multiple spatial dimensions. The algorithm’s effectiveness and efficiency are demonstrated through examples and applications. In particular, we illustrate the process of selecting an appropriate numerical scheme among a family of
potential discretization for a given PDE.
|
114 |
VAE-clustering of neural signals and their association to cytokines / VAE-klustring av nervsignaler och dess associationer till cytokinerEskandari, Aram January 2020 (has links)
In this thesis we start by reproducing previous experiments by Zanos et al., where they have shown that it is possible to associate neural signals with specific cytokines. One future aim of this project is to send synthetic neural signals through the efferent arc of the vagus nerve and observe reactions without the corresponding catalyst of the symptoms. We use a variational autoencoder (VAE) in our experiment to create a model able to generate new neural signals, and we introduce a novel clustering technique called VAE-clustering, which will be used to cluster neural signals with their associated cytokines. The focus of this paper is the implementation of this method and applying it on the neural signals. Running VAE-clustering on the MNIST dataset shows it to be viable for finding detailed properties of a dataset. We also find that using a VAE as a generative model for neural signals is a good way for recreating detailed waveforms. / I detta examensarbete börjar vi med att reproducera tidigare experiment av Zanos et al., där dom visat att det är möjligt att associera nervsignaler med specifika cytokiner. Ett framtida mål med detta projekt är att skicka syntetiska nervsignaler till kroppen för att observera reaktioner utan motsvarande katalysator av symptomen. Vi använder en variational autoencoder (VAE) i våra experiment för att skapa en modell kapabel till att generera nya nervsignaler, och vi introducerar en ny klusterings-teknik kallad VAE-klustring, vilken kommer att användas för att klustra nervsignaler med dess associerade cytokiner. Fokuset i detta arbete ligger i implementationen av denna metod och applicerandet på nervsignaler. Efter att ha kört VAE-klustring på MNIST dataset fann vi att det det är användbart för att hitta detaljerade egenskaper hos ett dataset. Vi har även funnit att användningen av en VAE som en generativ modell för nervsignaler är ett bra sätt att återskapa detaljerade vågformer.
|
115 |
MmWave Radar-based Deep Learning Collision PredictionLauren V'dovec, Taylor January 2023 (has links)
Autonomous drone navigation in classical approaches typically involves constructing a map representation and employing path planning and collision checking algorithms within that map. Recently, novel deep learning techniques combined with depth camera observations have emerged as alternative approaches capable of achieving comparable collision-free performance. While these methods have demonstrated effective collision-free performance in dense environments, they rely on low-noise range or visual data, which may not be feasible in extreme degraded environments characterized by factors such as dust, smoke, weak geometries, or low-texture areas. A possible alternative is to leverage recent progress in mmWave radar imaging, which previously has produced data of insufficient resolution for such purposes. Through the use of a Variational Autoencoder and existing collision prediction algorithms, the goal of this study is to prove the use of mmWave radar for navigating difficult environments. The results of the study exhibit successful navigation in simulated scenarios featuring sparse obstacles. Additionally, results of utilizing real-world mmWave radar data in example scenarios is provided to demonstrate the potential for further application of this technology. / Autonom navigation för drönare i klassiska tillvägagångssätt innebär vanligtvis att man konstruerar en kartrepresentation och använder vägplanerings- och kollisionskontrollalgoritmer inom den kartan. Nyligen har nya djupinlärningstekniker kombinerat med djupkameraobservationer framträtt som alternativa tillvägagångssätt som kan uppnå jämförbar prestanda utan kollisioner. Även om dessa metoder har visat effektiv prestanda utan kollisioner i täta miljöer, är de beroende av störningsfria avstånds- eller visuella data, vilket kanske inte är genomförbart i extrema försämrade miljöer som karakteriseras av faktorer som damm, rök, svaga geometrier eller områden med låg textur. Ett möjligt alternativ är att dra nytta av de senaste framstegen inom mmWave-radaravbildning, vilket tidigare har producerat data med otillräcklig upplösning för sådana ändamål. Genom användning av en varieabel autoencoder och befintliga kollisionsprognosalgoritmer syftar denna studie till att bevisa användningen av mmWave-radar för att navigera i svåra miljöer. Resultaten från studien visar framgångsrik navigering i simulerade scenarier med glesa hinder. Dessutom presenteras resultat från användning av verkliga mmWave-radardata i exempelscenarier för att visa potentialen för ytterligare tillämpningar av denna teknik.
|
116 |
Applying Machine Learning for Generating Radio Channel Coefficients : Practical insights into the process of selectingand implementing machine learning algorithms for spatial channel modellingZander, Adrian January 2021 (has links)
One cornerstone in building future 5G and beyond wireless systems is to mimic the real-world environment using a simulator. The simulator needs to reflect the experienced propagation environment by the device in different scenarios. Today, the methods used to generate such an environment and finding the signal qualities at certain locations can be time-consuming for large cities with many base stations and devices. The objective of this project is speed up an existing SCM channel generator by replacing certain time-critical numerical formulas with a machine learning (ML) model that can generate the channel coefficients directly. The expectation is that this setup will provide much faster generations than any existing solution. A machine learning paradigm is suggested and implemented. The results suggests that a model can learn and generalize from the training data, and that provided solution is a possible configuration for modelling radio channels. Conclusions regarding the implementational considerations are made as guidance for future work. / En av hörnstenarna för att kunna bygga framtida trådlösa 5G system är att kunna efterlikna den verkliga miljön med hjälp av en simulator. Simulatorn måste återspegla enhetens upplevda propageringsmiljö i olika scenarier. I dagens läge kan metoderna som används för att skapa en sådan miljö, och hitta signalkvaliteterna på vissa platser vara tidskrävande för scenarier med stora städer med många basstationer och enheter. Målet med detta projekt är att påskynda en befintlig SCM-kanalgenerator genom att ersätta vissa tidskritiska numeriska formler med en maskininlärningsmodell (ML) som kan generera kanalkoefficienterna direkt. Förväntningen är att denna lösning kommer att generera data mycket snabbare än någon befintlig lösning. En sådan lösning föreslås och implementeras. Resultaten tyder på att en modell kan lära sig och generalisera av träningsdatat, och att den tillhandahållna lösningen är en möjlig konfiguration för modellering av radiokanaler. Slutsatser gällande övervägningarna vid implementeringen dras som vägledning för framtida arbete.
|
117 |
Learning representations of features of fish for performing regression tasks / Lärande av representationer av särdrag från fiskar för användande i regressionsstudierJónsson, Kristmundur January 2021 (has links)
In the ever-changing landscape of the fishing industry, demands for automating specific processes are increasing substantially. Predicting future events eliminates much of the existing communication latency between fishing vessels and their customers and makes real-time analysis of onboard catch possible for the fishing industry. Further, machine learning models, may reduce the number of human resources necessary for the numerous processes that may be automated. In this document, we focus on weight estimation of three different species of fish. Namely, we want to estimate the fish weight given its specie through datadriven techniques. Due to the high complexity of image data, the overhead expenses of collecting images at sea, and the complexities of fish features, we consider a dimensionality reduction on the inputs to reduce the curse of dimensionality and increase interpretability. We will study the viability of modeling fish weights from lower-dimensional feature vectors and the conjunction of lower-dimensional feature vectors and algorithmically obtained features. We found that modeling the residuals with latent representations of a simple power model fitted on length features resulted in a significant difference in the weight estimates for two types of fish and a decrease in Root Mean Squared Error (rMSE) and Mean Absolute Percentage Error (MAPE) scores in favour of the estimations utilizing latent representations. / I fiskeindustrins ständigt föränderliga landskap ökar kraven på att automatisera specifika processer väsentligt. Att förutsäga framtida händelser eliminerar mycket av den befintliga kommunikationsfördröjningen mellan fiskefartyg och deras kunder och möjliggör analys i realtid av ombordfångst för fiskeindustrin. Vidare kan det minska antalet personalresurser som krävs för de många processer som kan automatiseras. I detta dokument studerar vi två olika beslutsproblem relaterade till att sortera fisk av tre olika arter. Vi vill nämligen bestämma fiskvikten och dess art genom datadrivna tekniker. På grund av bilddatas höga komplexitet, de allmänna kostnaderna för att samla bilder till sjöss och komplexiteten hos fiskegenskaper, anser vi att en dimensionalitetsminskning av särdragen minskar problemet relaterat till dimensionsexplosion och ökar tolkbarheten. Vi kommer att studera lämpligheten av modellering av fiskvikter och arter från lägre dimensionella särdragsvektorer samt kombinationen av dessa med algoritmiskt erhållna funktioner. Vi fann att modellering av residual med latenta representationer av en enkel potensfunktionsmodell som är anpassad till fisklängder resulterade i en signifikant skillnad i viktuppskattningarna för två typer av fisk och en minskning av rMSE och MAPE poäng.
|
118 |
Hybrid Variational Autoencoder for Clustering of Single-Cell RNA-seq Data : Introducing HybridVI, a Variational Autoencoder with two Latent Spaces / Hybrid Variational autoencoder för analys av enkelcells RNA-sekvensering dataNarrowe Danielsson, Sarah January 2022 (has links)
Single-cell analysis means to analyze cells on an individual level. This individual analysis enhances the investigation of the heterogeneity among and the classification of individual cells. Single-cell analysis is a broad term and can include various measurements. This thesis utilizes single-cell RNA sequence data that measures RNA sequences representing genes for individual cells. This data is often high-dimensional, with tens of thousands of RNA sequences measured for each cell. Dimension reduction is therefore necessary when analyzing the data. One proposed dimension reduction method is the unsupervised machine learning method variational autoencoders. The scVI framework has previously implemented a variational autoencoder for analyzing single-cell RNA sequence data. The variational autoencoder of the scVI has one latent space with a Gaussian distribution. Several extensions have been made to the scVI framework since its creation. This thesis proposes an additional extension consisting of a variational autoencoder with two latent spaces, called hybridVI. One of these latent spaces has a Gaussian distribution and the other a von Mises-Fisher distribution. The data is separated between these two latent spaces, meaning that some of the genes go through one latent space and the rest go through the other. In this thesis the cell cycle genes go through the von Mises-Fisher latent space and the rest of the genes go through the Gaussian latent space. The motivation behind the von Mises-Fisher latent space is that cell cycle genes are believed to follow a circular distribution. Putting these genes through a von Mises-Fisher latent space instead of a Gaussian latent space could provide additional insights into the data. The main focus of this thesis was to analyze the impact this separation. The analysis consisted of comparing the performance of the hybridVI model, to the original scVI variational autoencoder. The comparison utilized three annotated datasets, one peripheral blood mononuclear cell dataset, one cortex cell dataset, and one B cell dataset collected by the Henriksson lab at Umeå University. The evaluation metrics used were the adjusted rand index, normalized mutual information and a Wilcoxon signed ranks test was used to determine if the results had statistical significance. The results indicate that the size of the dataset was essential for achieving robust and statistically significant results. For the two datasets that yielded statistically significant results, the scVI model performed better than the hybridVI model. However, more research analyzing biological aspects is necessary to declare the hybridVI model’s effect on the biological interpretation of the results. / Individuell cellanalys är en relativt ny metod som möjliggör undersökning av celler på indivudiell nivå. Det här examensarbetet analyserar RNA sekvens data, där RNA sekvenser är specifierade för individuella celler. Den här sortens data är ofta högdimensionell med flera tusen gener noterade för varje cell. För att möjliggöra en analys av den här datan krävs någon form av dimensionreducering. En föreslagen metod är den ovövervakade maskininlärningsmetoden variational autoencoders. Ett ramverk, scVI, har framtagit en variational autoencoder designad för att hantera den här sortens data. Den här modellen har endast en latentrymd med en normalfördelning. Det här examensarbetet föreslår en utökning av det här ramverket med en variational autoencoder med två latentrymder,där den ena är normalfördelad och den andra följer en von Mises-Fisher fördelning. Motiveringen till en sådan fördelning är att cellcykelgener är antagna att tillhöra en cirkulär fördelning. Cellcykelgenerna i datan kan därmed hanteras av den cirkulära latentrymden. Huvudfokuset i den här studien är att undersöka om den här separationen av gener kan förbättra modellens förmåga att hitta korrekta kluster. Experimentet utfördes på tre annoterade dataset, ett som bestod av perifera mononukleära blodceller, ett som bestod av hjärnbarksceller och ett som bestod av B celler insamlat av Henrikssongruppen vid Umeå universitet. Modellen från scVI ramverket jämfördes med den nya metoden med två latentrymder, hybridVI. Måtten som användes för att bedöma de modellerna var adjusted rand index och normaliserad mutual information och ett Wilcoxon Signed-Ranks test användes för att bedöma resultatens statistiska signifikans. Resultaten påvisar att de båda modellerna preseterar bättre och mer konsekvent för större dataset. Två dataset gav statistiskt signifikanta resultat och visade att scVI modellen presterade bättre än hybridmodellen. Det behövs dock en biologisk analys av resultaten för att undersöka vilken modells resultat som har mest biologisk relevans.
|
119 |
MCMC estimation of causal VAE architectures with applications to Spotify user behavior / MCMC uppskattning av kausala VAE arkitekturer med tillämpningar på Spotify användarbeteendeHarting, Alice January 2023 (has links)
A common task in data science at internet companies is to develop metrics that capture aspects of the user experience. In this thesis, we are interested in systems of measurement variables without direct causal relations such that covariance is explained by unobserved latent common causes. A framework for modeling the data generating process is given by Neuro-Causal Factor Analysis (NCFA). The graphical model consists of a directed graph with edges pointing from the latent common causes to the measurement variables; its functional relations are approximated with a constrained Variational Auto-Encoder (VAE). We refine the estimation of the graphical model by developing an MCMC algorithm over Bayesian networks from which we read marginal independence relations between the measurement variables. Unlike standard independence testing, the method is guaranteed to yield an identifiable graphical model. Our algorithm is competitive with the benchmark, and it admits additional flexibility via hyperparameters that are natural to the approach. Tuning these parameters yields superior performance over the benchmark. We train the improved NCFA model on Spotify user behavior data. It is competitive with the standard VAE on data reconstruction with the benefit of causal interpretability and model identifiability. We use the learned latent space representation to characterize clusters of Spotify users. Additionally, we train an NCFA model on data from a randomized control trial and observe treatment effects in the latent space. / En vanlig uppgift för en data scientist på ett internetbolag är att utveckla metriker som reflekterar olika aspekter av användarupplevelsen. I denna uppsats är vi intresserade av system av mätvariabler utan direkta kausala relationer, så till vida att kovarians förklaras av latenta gemensamma orsaker. Ett ramverk för att modellera den datagenererande processen ges av Neuro-Causal Factor Analysis (NCFA). Den grafiska modellen består av en riktad graf med kanter som pekar från de latenta orsaksvariablerna till mätvariablerna; funktionssambanden uppskattas med en begränsad Variational Auto-Encoder (VAE). Vi förbättrar uppskattningen av den grafiska modellen genom att utveckla en MCMC algoritm över Bayesianska nätverk från vilka vi läser de obetingade beroendesambanden mellan mätvariablerna. Till skillnad från traditionella oberoendetest så garanterar denna metod en identifierbar grafisk modell. Vår algoritm är konkurrenskraftig jämfört med referensmetoderna, och den tillåter ytterligare flexibilitet via hyperparametrar som är naturliga för metoden. Optimal justering av dessa hyperparametrar resulterar i att vår metod överträffar referensmetoderna. Vi tränar den förbättrade NCFA modellen på data om användarbeteende på Spotify. Modellen är konkurrenskraftig jämfört med en standard VAE vad gäller rekonstruktion av data, och den tillåter dessutom kausal tolkning och identifierbarhet. Vi analyserar representationen av Spotify-användarna i termer av de latenta orsaksvariablerna. Specifikt så karakteriserar vi grupper av liknande användare samt observerar utfall av en randomiserad kontrollerad studie.
|
120 |
Variational Regularization Strategy for Atmospheric TomographyAltuntac, Erdem 04 April 2016 (has links)
No description available.
|
Page generated in 0.0536 seconds