• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 72
  • 11
  • 10
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 265
  • 265
  • 94
  • 70
  • 61
  • 59
  • 49
  • 45
  • 43
  • 39
  • 35
  • 31
  • 30
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

The finite element method simulation of active optimal vibration attenuation in structures

Baweja, Manish 30 April 2004 (has links)
The Finite Element Method (FEM) based computational mechanics is applied to simulate the optimal attenuation of vibrations in actively controlled structures. The simulation results provide the forces to be generated by actuators, as well as the structures response. Vibrations can be attenuated by applying either open loop or closed loop control strategies. In open loop control, the control forces for a given initial (or disturbed) configuration of the structure are determined in terms of time, and can be preprogrammed in advance. On the other hand, the control forces in closed loop control depend only on the current state of the system, which should be continuously monitored. Optimal attenuation is obtained by solving the optimality equations for the problem derived from the Pontryagins principle. These equations together with the initial and final boundary conditions constitute the two-point-boundary-value (TPBV) problem. <p>Here the optimal solutions are obtained by applying an analogy (referred to as the beam analogy) between the optimality equation and the equation for a certain problem of static beams in bending. The problem of analogous beams is solved by the standard FEM in the spatial domain, and then the results are converted into the solution of the optimal vibration control problem in the time domain. The concept of the independent-modal-space-control (IMSC) is adopted, in which the number of independent actuators control the same number of vibrations modes. <p>The steps of the analogy are programmed into an algorithm referred to as the Beam Analogy Algorithm (BAA). As an illustration of the approach, the BAA is used to simulate the open loop vibration control of a structure with several sets of actuators. Some details, such as an efficient meshing of the analogous beams and effective solving of the target condition are discussed. <p> Next, the BAA is modified to handle closed loop vibration control problems. The algorithm determines the optimal feedback gain matrix, which is then used to calculate the actuator forces required at any current state of the system. The methods accuracy is also analyzed.
162

Active Vibration Control Of Beam And Plates By Using Piezoelectric Patch Actuators

Luleci, Ibrahim Furkan 01 January 2013 (has links) (PDF)
Conformal airborne antennas have several advantages compared to externally mounted antennas, and they will play an important role in future aircrafts. However, they are subjected to vibration induced deformations which degrade their electromagnetic performances. With the motivation of suppressing such vibrations, use of active vibration control techniques with piezoelectric actuators is investigated in this study. At first, it is aimed to control the first three bending modes of a cantilever beam. In this scope, four different modal controllers / positive position feedback (PPF), resonant control (RC), integral resonant control (IRC) and positive position feedback with feed-through (PPFFT) are designed based on both reduced order finite element model and the system identification model. PPFFT, is a modified version of PPF which is proposed as a new controller in this study. Results of real- time control experiments show that PPFFT presents superior performance compared to its predecessor, PPF, and other two methods. In the second part of the study, it is focused on controlling the first three modes of a rectangular plate with four clamped edges. Best location alternatives for three piezoelectric actuators are determined with modal strain energy method. Based on the reduced order finite element model, three PPFFT controllers are designed for three collocated transfer functions. Disturbance rejection performances show the convenience of PPFFT in multi-input multi-output control systems. Performance of the control system is also verified by discrete-time simulations for a random disturbance representing the in-flight aircraft vibration characteristics.
163

Structural Health Monitoring System for Deepwater Risers with Vortex-Induced Vibration: Nonlinear Modeling, Blind Identification, Fatigue/Damage Estimation and Vibration Control

Huang, Chaojun 16 September 2013 (has links)
This study focuses on developing structural health monitoring techniques to detect damage in deepwater risers subjected to vortex-induced vibration (VIV), and studying vibration control strategies to extend the service life of offshore structures. Vibration-based damage detection needs both responses from the undamaged and damaged deepwater risers. Because no experimental data for damaged deepwater risers is available, a model to predict the VIV responses of deepwater risers with given conditions is needed, which is the forward problem. In this study, a new three dimensional (3D) analytical model is proposed considering coupled VIV (in-line and cross-flow) for top-tensioned riser (TTR) with wake oscillators. The model is verified by direct numerical simulations and experimental data. The inverse problem is to detect damage using VIV responses from the analytical models with/without damage, where the change between dynamic properties obtained from riser responses represents damage. The inverse problem is performed in two steps: blind identification and damage detection. For blind identification, a wavelet modified second order blind identification (WMSOBI) method and a complex WMSOBI (CWMSOBI) method are proposed to extract modal properties from output only responses for standing and traveling wave vibration, respectively. Numerical simulations and experiments validate the effectiveness of proposed methods. For damage detection, a novel weighted distribution force change (WDFC) index (for standing wave) and a phase angle change (PAC) index (for traveling wave) are proposed and proven numerically. Experiments confirm that WDFC can accurately locate damage and estimate damage severity. Furthermore, a new fatigue damage estimation method involving WMSOBI, S-N curve and Miner's rule is proposed and proven to be effective using field test data. Vibration control is essential to extend the service life and enhance the safety of offshore structures. Literature review shows that semi-active control devices are potentially a good solution. A novel semi-active control strategy is proposed to tune the damper properties to match the dominant frequency of the structural response in real-time. The effectiveness of proposed strategy in vibration reduction for deepwater risers and offshore floating wind turbines is also validated through numerical studies.
164

Control Of A Satellite With Flexible Smart Beam During Slew Maneuver

Urek, Halime 01 September 2011 (has links) (PDF)
In this thesis, an attitude control system based on Linear Quadratic Regulator (LQR) technique is developed for a hypothetical Earth observation satellite with a long flexible boom. To improve pointing performance of the satellite, the piezoelectric actuators are used as well. The boom is rectangular made of aluminum with the surface bonded piezoelectric layers on all four surfaces. The boom is modeled using finite elements. The pointing performance of the satellite using various metrics is evaluated through simulations. Effectiveness of the piezoelectric actuators is demonstrated.
165

Semi-active Control Of Earthquake Induced Vibrations In Structures Using MR Dampers : Algorithm Development, Experimental Verification And Benchmark Applications

Ali, Shaik Faruque 07 1900 (has links)
As Civil Engineering structures, e.g., tall buildings, long span bridges, deep water offshore platforms, nuclear power plants, etc., have become more costly, complex and serve more critical functions, the consequences of their failure are catastrophic. Therefore, the protection of these structures against damage induced by large environmental loads, e.g., earthquakes, strong wind gusts and waves, etc., is without doubt, a worldwide priority. However, structures cannot be designed to withstand all possible external loads and some extraordinary loading episodes do occur, leading to damage or even failure of the structure. Protection of a structure against hazards can be achieved by various means such as modifying structural rigidities, increasing structural damping, and by attaching external devices, known as control devices. Control devices can be deployed either to isolate the structure from external excitation or to absorb input seismic energy to the structure (absorber) so as to mitigate vibration in the primary structure. Seismic base isolation is one such mechanism which isolates a structure from harmful ground excitations. Seismic base isolation is a widely accepted and implemented structural control mechanism due to its robustness and ease in deployment. Following the Northridge earthquake (1994), and Kobe earthquake (1995), the interest of structural engineers in understanding near-source ground motions has enhanced. Documents published after these earthquakes emphasized the issue of large base displacements because of the use of none or little isolation damping (of viscous type only) prior to these events. More recent studies have investigated analytically and experimentally, the efficiency of various dissipative mechanisms to protect seismic isolated structures from recorded near-source long period, pulse-type, high velocity ground motions. Consequently, hybrid isolation systems, seismic base isolation supplemented with damping mechanisms, have become the focus of current research trend in structural vibration control. Hybrid base isolation system incorporating passive supplemental damping devices like, viscous fluid dampers, etc., performs satisfactorily in minimizing isolator displacement but at the same time increases superstructure acceleration response. Furthermore, the passive system can be tuned to a particular frequency range and its performance decreases for frequencies of excitation outside the tunning bandwidth. In such a scenario, active control devices in addition to base isolation mechanism provide better performance in reducing base displacement and superstructure acceleration for a broad range of excitation frequencies. Tremendous power requirement and the possibility of power failure during seismic hazards restrict the usage of active systems as a supplemental device. Semi-active devices provide the robustness of passive devices and adaptive nature of active devices. These characteristics make them better suited for structural control applications. The recent focus is on the development of magnetorheological (MR) dampers as semi-active device for structural vibration control applications. MR dampers provide hysteretic damping and can operate with battery power. The thrust of this thesis is on developing a hybrid base isolation mechanism using MR dampers as a supplemental damping device. The use of MR damper as a semi-active device involves two steps; development of a model to describe the MR damper hysteretic behaviour; development of a proper nonlinear control algorithm to monitor MR damper current / voltage supply. Existing parametric models of MR damper hysteretic behaviour, e.g., Bouc-Wen model, fail to consider the effect of amplitude and frequency of excitation on the device. Recently reported literature has demonstrated the necessity of incorporating amplitude and frequency dependence of MR damper models. The current/voltage supply as the input variable to the MR damper restricts the direct use of any control algorithms developed for active control of structures. The force predicted by the available control algorithms should be mapped to equivalent current/voltage and then to be fed into the damper. Available semi-active algorithms in the literature used ‘on-off’ or ‘bang-bang’ strategy for MR applications due to nonlinear current/voltage-force relation of MR damper. The ‘on-off’ nature of these algorithms neither provides smooth change in MR damper current/voltage input nor considers all possible current/ voltage values within its minimum to maximum range. Secondly, these algorithms fail to consider the effect of the MR damper applied and commanded current/voltage dynamics. The thrust of this dissertation is to develop semi-active control algorithms to monitor MR damper supply current/voltage. The study develops a Bouc-Wen based model to characterize the MR damper hysteretic phenomenon. Experimental results and modeling details have been documented. A fuzzy based intelligent control and two model-based nonlinear control algorithms based on optimal dynamic inversion and integral backstepping have been developed. Performance of the fuzzy logic based intelligent control has been explored using experimental investigation on a three storey base isolated building. Further the application of the proposed controllers on a benchmark building; a benchmark highway bridge and a stay cable vibration reduction have been discussed. Experimental study has revealed that the performance of optimal FLC is better than manually designed FLC in terms of reducing base displacement and storey accelerations. The performance of both the FLCs (simple FLC and genetic algorithm based optimal FLC) is better than ‘passive-off’ (zero ampere current supply) and ‘passive-on’ (one ampere current supply) condition of MR damper applications. The ‘passive-off’ results have shown higher base displacements with lower storey accelerations, whereas, the ‘passive-on’ results have reduced base displacement to the least but at the same time increased the storey acceleration too much. The FLC monitored MR damper show a compromise between the two passive conditions. Analytical results confirm these observations. Numerical simulations of the base isolated building with the two model based MR damper control algorithms developed have shown a better performance over FLC and widely used clipped optimal algorithms. The applications of the proposed semi-active control algorithms (FLC, dynamic inversion and integral backstepping) have shown better performance in comparison to that of control algorithms provided with the benchmark studies.
166

Mobile boom cranes and advanced input shaping control

Danielson, Jon David 15 July 2008 (has links)
Millions of cranes are used around the world. Because of their wide-spread use in construction industries, boom cranes are an important class of cranes whose performance should be optimized. One limitation of most boom cranes is they are usually attached to a stationary base or a mobile base that is only used for initial positioning and not during operation. This limits the workspace of the boom crane significantly. If a boom crane was attached to a mobile base that could be safely used during lifting operations, then the boom crane workspace could be extended significantly. The problem with using cranes, and in particular mobile cranes, is the large oscillations of the payload that are typically induced when moving the crane. One control strategy that has been used to control oscillation on other types of cranes is called Input Shaping, a command filtering technique that reduces motion-induced vibration in oscillatory systems. This thesis develops a dynamics model for a mobile boom crane and analyzes the difficulty of controlling payload oscillation on a boom crane. Input shaping will shown to be effective for controlling oscillation on boom cranes. A new method for operating a boom crane in Cartesian coordinates will also be shown. This thesis will also detail the design of a small-scale mobile boom crane for experimental and research purposes. A substantial part of this thesis will also focus on the development of new input-shaping methods for nonlinear drive systems commonly found on boom and other types of cranes. An example application of a control system featuring input shaping for an industrial bridge crane will also be discussed.
167

Operational Performance Enhancement of Human Operated Flexible Systems

Sorensen, Khalid Lief 08 July 2008 (has links)
Recent decades have been witness to explosive leaps in manufacturing productivity. Advances in communication technology, computing speed, control theory, and sensing technology have been significant contributors toward the increased productivity and efficiency that industry has exhibited. The continued growth of technological equipment and engineering knowledge challenges engineers to fully utilize these advancements in more sophisticated and useful automation systems. One such application involves enhancing bridge and gantry crane operation. These systems are used throughout the globe, and are critical aspects of industrial productivity. Consequently, improving the operational effectiveness of cranes can be extremely valuable. Effective control of cranes can be largely attributed to two distinct, but related aspects crane manipulation: 1) the expertise of operators, which are responsible for issuing commands to the structures, and 2) the dynamic properties of cranes, which influence how the structures respond to issued commands. Accordingly, the operational efficiency of cranes can be influenced by changing both the way that operators issue commands to cranes, and also how the crane responds to issued commands. This thesis is concerned with dynamic control theory of flexible machines, and human/machine interaction, especially as these areas relate to industrial crane control. In the area of dynamic control, this thesis investigates control strategies that are specifically suited for use on systems that possess common actuator nonlinearities, like saturation, rate limiting, dead-zone, backlash, and finite-state actuation. In the area of human/machine interaction, this thesis investigates the effects of different crane interface devices on the operational efficiency of cranes.
168

Estudo de modelos espectrais de vigas para controle ativo de vibrações e monitoramento da integridade estrutural / Study of spectral models of beams for active vibration control and structural health monitoring

Conceição, Sanderson Manoel da 20 December 2016 (has links)
Submitted by Sanderson Manoel Da Conceição (enders83@yahoo.com.br) on 2018-08-24T00:09:53Z No. of bitstreams: 1 TeseDR_Sanderson.pdf: 5806318 bytes, checksum: 51410134afd7ae86d0783074d6012e88 (MD5) / Approved for entry into archive by Cristina Alexandra de Godoy null (cristina@adm.feis.unesp.br) on 2018-08-24T17:09:49Z (GMT) No. of bitstreams: 1 conceicao_sm_dr_ilha.pdf: 5957405 bytes, checksum: 16cab2d9c84f81cd3cd4ff0b9fa36219 (MD5) / Made available in DSpace on 2018-08-24T17:09:49Z (GMT). No. of bitstreams: 1 conceicao_sm_dr_ilha.pdf: 5957405 bytes, checksum: 16cab2d9c84f81cd3cd4ff0b9fa36219 (MD5) Previous issue date: 2016-12-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A ideia central deste trabalho é utilizar o método dos Elementos Espectrais (SEM, do inglês Spectral Element Method) para aplicações de controle ativo de vibrações e monitoramento da integridade estrutural (SHM, do inglês Structural Health Monitoring). Diversos trabalhos têm abordado estes tópicos de forma independente. No entanto, para aplicações reais de engenharia, utilizar os mesmos atuadores, sensores e sistemas de aquisição de dados para controle e monitoramento pode reduzir investimentos e simplificar processos. Por esta motivação, este trabalho apresenta um estudo de modelos espectrais para estruturas do tipo viga considerando aplicações de controle de vibrações e monitoramento da integridade estrutural. Na modelagem são considerados os modelos de vigas de Euler-Bernoulli e Timoshenko, além de transdutores piezelétricos acoplados. A técnica de controle clássico PID (Proporcional, Integral, Derivativo) é explorada e uma nova modelagem é proposta para se considerar técnicas modernas de controle por realimentação de estados na formulação espectral. Em particular, discute-se o controlador LQR (do inglês, Linear Quadratic Regulator), no entanto, a metodologia permite se considerar outras técnicas de controle por realimentação baseada na representação no espaço de estados. Também, especificamente para monitoramento estrutural, no presente trabalho de tese apresenta-se uma discussão sobre índices de detecção de danos. Índices de detecção calculados a partir de sinais experimentais têm sido amplamente utilizados em trabalhos da literatura de SHM. No entanto, pouco tem sido esclarecido sobre seus comportamentos em função das características estruturais e dos danos. Neste sentido, o presente trabalho apresenta uma discussão do comportamento de índices baseados na norma H2, norma H∞ e no CCDM (Correlation coefficient deviation metric), para duas faixas de frequência, em função da severidade do dano e quantidade de amortecimento no sistema. Os resultados obtidos indicam que a formulação por Elementos Espectrais é adequada para viabilizar os projetos simultâneos de um controlador de vibrações e um sistema de monitoramento estrutural utilizando os mesmos equipamentos e simplificando análises ao se utilizar um único modelo dinâmico do sistema. / The main idea of this thesis is to use the Spectral Element Method (SEM), in applications of Active Vibration Control (AVC) and Structural Health Monitoring (SHM). These two topics have been approached in several works, but in an independent way. However, for real engineering applications, to use the same actuators, sensors and data acquisition systems to active control and structural monitoring can reduce the costs and simplify processes. For this reason, this thesis presents a study of spectral models for beam-like structures considering applications of vibration control and structural health monitoring. The Euler-Bernoulli and Timoshenko beam theories are used in the spectral modelling and the piezelectric transducers bonded in the structures are also considered. A classical control technique, PID (Proportional, Integral, Derivative) is explored and a new modelling approach to consider modern control methods of state feedback is proposed in spectral formulation. In particular, the Linear Quadratic Regulator (LQR) is discussed, however, this methodology allows for any other state feedback control techniques based in state space representation. Also, specifically for structural monitoring, is presented a discussion about damage detection indices. Detection indices computed from experimental data have been widely used in SHM studies. However, little has been clarified about their behaviours due to structural characteristics and damages. In this context, this work presents a discussion of the behaviour of indices based in the H2 norm, H∞ norm and CCDM (Correlation coefficient deviation metric), for two frequency ranges, depending on the severity of damage and amount of damping in the system. The obtained results indicate that the spectral element formulation is suited to enable the simultaneous design of a vibration controller and a structural monitoring system using the same data acquisition systems and simplifying analysis when using just one dynamic model of the system.
169

Estudo de modelos espectrais de vigas para controle ativo de vibrações e monitoramento da integridade estrutural /

Conceição, Sanderson Manoel da. January 2016 (has links)
Orientador: Vicente Lopes Junior / Resumo: A ideia central deste trabalho é utilizar o método dos Elementos Espectrais (SEM, do inglês Spectral Element Method) para aplicações de controle ativo de vibrações e monitoramento da integridade estrutural (SHM, do inglês Structural Health Monitoring). Diversos trabalhos têm abordado estes tópicos de forma independente. No entanto, para aplicações reais de engenharia, utilizar os mesmos atuadores, sensores e sistemas de aquisição de dados para controle e monitoramento pode reduzir investimentos e simplificar processos. Por esta motivação, este trabalho apresenta um estudo de modelos espectrais para estruturas do tipo viga considerando aplicações de controle de vibrações e monitoramento da integridade estrutural. Na modelagem são considerados os modelos de vigas de Euler-Bernoulli e Timoshenko, além de transdutores piezelétricos acoplados. A técnica de controle clássico PID (Proporcional, Integral, Derivativo) é explorada e uma nova modelagem é proposta para se considerar técnicas modernas de controle por realimentação de estados na formulação espectral. Em particular, discute-se o controlador LQR (do inglês, Linear Quadratic Regulator), no entanto, a metodologia permite se considerar outras técnicas de controle por realimentação baseada na representação no espaço de estados. Também, especificamente para monitoramento estrutural, no presente trabalho de tese apresenta-se uma discussão sobre índices de detecção de danos. Índices de detecção calculados a partir de sinais experimen... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The main idea of this thesis is to use the Spectral Element Method (SEM), in applications of Active Vibration Control (AVC) and Structural Health Monitoring (SHM). These two topics have been approached in several works, but in an independent way. However, for real engineering applications, to use the same actuators, sensors and data acquisition systems to active control and structural monitoring can reduce the costs and simplify processes. For this reason, this thesis presents a study of spectral models for beam-like structures considering applications of vibration control and structural health monitoring. The Euler-Bernoulli and Timoshenko beam theories are used in the spectral modelling and the piezelectric transducers bonded in the structures are also considered. A classical control technique, PID (Proportional, Integral, Derivative) is explored and a new modelling approach to consider modern control methods of state feedback is proposed in spectral formulation. In particular, the Linear Quadratic Regulator (LQR) is discussed, however, this methodology allows for any other state feedback control techniques based in state space representation. Also, specifically for structural monitoring, is presented a discussion about damage detection indices. Detection indices computed from experimental data have been widely used in SHM studies. However, little has been clarified about their behaviours due to structural characteristics and damages. In this context, this work presents a d... (Complete abstract click electronic access below) / Doutor
170

Controle de vibrações em rotores flexíveis utilizando fios de liga com memória de forma /

Geronel, Renan Sanches. January 2018 (has links)
Orientador: Gustavo Luiz Chagas Manhães de Abreu / Resumo: Os sistemas rotativos estão frequentemente sujeitos a excitações externas e internas que provocam vibrações indesejáveis, colocando em risco a própria integridade estrutural do sistema e até mesmo a saúde dos usuários. No âmbito industrial, por exemplo, a atenuação das vibrações pode permitir aos sistemas rotativos, uma operação mais eficiente e segura, proporcionando manutenções periódicas menos frequentes evitando com isso gastos dispendiosos. Neste contexto, o controle de vibrações tem sido objeto de preocupação de inúmeros centros de pesquisa e a literatura especializada é rica em propostas de soluções para esta questão. Este trabalho apresenta uma proposta teórica de um controle semi-ativo de vibrações em rotores flexíveis usando fios de liga com memória de forma (LMF). O rotor em questão é apoiado sobre dois mancais e um deles é suspenso por fios de LMF, cuja finalidade é promover o amortecimento das vibrações laterais presentes no sistema rotativo decorrentes de forças de perturbação, notadamente das forças de desbalanceamento. O controle proposto tem por objetivo possibilitar a passagem do rotor pelas velocidades críticas, com segurança. / Abstract: Rotational systems are often subjected to external and internal excitations which cause undesired vibrations and risk to the structural integrity of the system and the user's health. In the industrial eld, the vibration attenuation may allow rotating systems more e ciency and safety, making periodical maintenance less frequent and reducing costs. In this context, the vibration control has been a concern for many research centers and the specialized literature is rich in solution proposals for this subject. This study presents a theoretical proposal of a semi-active control of vibrations in exible rotors using shape memory alloy (SMA) wires. The rotor is supported by two bearings and one of them it is suspended by SMA wires to promote attenuation of the lateral vibration present in rotating machines due to disturbance forces, especially unbalancing forces. The proposed theory control has a goal to allow the rotor passing through critical speeds safely. / Mestre

Page generated in 0.0627 seconds