Spelling suggestions: "subject:"[een] WATER SPLITTING"" "subject:"[enn] WATER SPLITTING""
51 |
Síntese de nanotubos obtidos pelo processo de anodização sob a liga Ti-75Ta como fotocatalisador para fotogeração de H₂SOARES, Thiago André Salgueiro 25 January 2017 (has links)
Submitted by Pedro Barros (pedro.silvabarros@ufpe.br) on 2018-07-19T20:29:07Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
DISSERTAÇÃO Thiago André Salgueiro Soares.pdf: 4033349 bytes, checksum: 4a1bb454487e180fb4adfc6bb7d4d5a2 (MD5) / Approved for entry into archive by Alice Araujo (alice.caraujo@ufpe.br) on 2018-07-20T22:05:04Z (GMT) No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
DISSERTAÇÃO Thiago André Salgueiro Soares.pdf: 4033349 bytes, checksum: 4a1bb454487e180fb4adfc6bb7d4d5a2 (MD5) / Made available in DSpace on 2018-07-20T22:05:05Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
DISSERTAÇÃO Thiago André Salgueiro Soares.pdf: 4033349 bytes, checksum: 4a1bb454487e180fb4adfc6bb7d4d5a2 (MD5)
Previous issue date: 2017-01-25 / CNPQ / Neste trabalho estudou-se a síntese de nanotubos (NT) a partir da liga Ti-75Ta através do processo de anodização e a sua aplicação como fotocatalisador na foto geração de hidrogênio (H₂). Através do planejamento fatorial 2³ completo foi possível a fabricação das nanoestruturas sob diferentes condições de potencial, tempo e temperatura e avaliar os feitos sob o campo elétrico do sistema (densidade de corrente) e a morfologia dos nanotubos (diâmetro e comprimento) e assim obter nanotubos com elevada área superficial especifica (62 m²/g). Os NT TiO₂-Ta₂O₅ sintetizados sob as diferentes condições experimentais foram caracterizados por microscopia eletrônica de varredura (MEV) permitindo mensurar os diâmetros e os comprimentos dos óxidos. As nanoestruturas quando formadas são amorfas necessitando de tratamento térmico para se obter a fase cristalina. A técnica de difração de Raios X (DRX) permitiu estudar a cinética de transformação das fases dos NT TiO₂-Ta₂O₅ e determinar que a temperatura de 800°C é a ideal para a obtenção das fases cristalinas sem danificar as nanoestruturas. Visando a formação de uma nova fase as amostras foram tratadas a 1000°C dando origem a um novo produto identificado como óxido misto de TiTa₂O₇, obtendo uma síntese simples e rápida para a fabricação deste material. A estrutura eletrônica foi avaliada através da técnica de espectroscopia de reflectância difusa, os NT TiO₂-Ta₂O₅ apresentaram band gap de 3,29eV, ao passo que os NT TiTa₂O₇ apresentaram band gap 3,09eV, potencializando a sua aplicação como fotocatalisador na reação de water splitting (WS). Desta forma, tentar combinar o processo de fotogeração de hidrogênio (WS) com a degradação de poluentes orgânicos é uma nova tendência mundial. Neste contexto, o glicerol foi utilizado como agente redutor e demonstrou ser um excelente agente de sacrifício, pois além de auxiliar na separação dos pares elétrons/buracos, apresentou longo tempo de estabilidade sem geração de CO₂ e a sua fotodegradação resultou na formação de dihidroxiacetona, como co-produto de alto valor agregado. Os nanotubos de sintetizados a 800°C apresentaram eficiência de conversão da energia solar em H₂ (STH) de 0,062% enquanto que os óxidos mistos apresentam STH de 0,092% resultados significativos admitindo ue são estruturas simples que permitem melhorias como a adição de catalisadores e dopantes. Além da aplicação como fotocatalisador o TiTa₂O₇ pode ser aplicado como ânodo em baterias de íon de Lítio, produto de grande impacto tecnológico. / In this work the synthesis of nanotubes (NT) from Ti-75Ta alloy (NT TiO₂-Ta₂O₅) was studied through the anodizing process and its application as photocatalyst in the hydrogen (H₂) photogeneration. Through the 2³ factorial design it was possible to fabricate nanostructures under different conditions of potential, time and temperature and to evaluate the effects under electric field of the system (current density) and the morphology of the nanotubes (diameter and length) to obtain nanotubes with Specific surface area (62 m²/g). The NT TiO₂-Ta₂O₅ synthesized as different experimental conditions were characterized by scanning electron microscopy (SEM) allowing to measure the diameters and the lengths of the oxides. As nanostructures when formed are amorphous requiring heat treatment to obtain a crystalline phase. The X-ray diffraction (XRD) technique allowed a transformation kinetics of the NT TiO₂-Ta₂O₅ phases and a temperature of 800 °C is an ideal for obtaining crystalline phases without damaging as nanostructures. Targeting a new phase formation as samples were treated at 1000 ° C to give a new product identified as TiTa₂O₇ mixed oxide, obtaining a simple and rapid synthesis for a manufacture of this material. The electronic structure was evaluated using the diffuse reflection spectroscopy technique, the NT TiO₂-Ta₂O₅ presented a band gap of 3.29eV, whereas the TiTa₂O₇ presented band gap 3.08eV, potentializing its application as a photocatalyst in the reaction of water splitting (WS). In this way, combining the hydrogen photogeneration (WS) process with a degradation of organic pollutants is a new world trend. Glycerol was used as a reducing agent and demonstrated to be an excellent reduction agent, besides assisting in the separation of e-/h+ pairs, presented long time of stability without generation of CO₂ and its photodegradation resulted in the formation of dihydroxyacetone, as coproduct of high added value. The nanotubes synthesized at 800 °C showed the conversion of solar energy to H₂ (STH) of 0.062% since the oxides are mixed have STH of 0.092% significant results admitted that are simple structures that stand out as an addition of noble metal nanoparticles and dopants. In addition to the application as a photocatalyst TiTa₂O₇ can be applied as an anode in Lithium ion batteries.
|
52 |
Photocatalyse de décomposition de l'eau : conception et construction d'une cellule photoelectrocatalyique pour la photodissociation de l'eau / Water splitting photoelectrocatalysis : the conception and construction of a photoelectrocatalytic water splitting cellHilliard, Samantha 23 February 2016 (has links)
La photoelectrocatalyse de l'eau par rayonnement solaire est une solution communément proposée pour la production propre d'hydrogène. En termes de rendement solaire-à-hydrogène, un tandem dual photosystème est accepté comme la configuration plus efficace concernant les cellules photoelectrocatalytique pour la dissociation de l'eau. Ce travail s'intéresse au trioxyde de tungstène (WO3) et au bismuth vanadate (BiVO4) sous la forme de photoanodes type n en couches minces pour la complétion d'oxydation de l'eau dans la demi-réaction pour la dissociation complète de l'eau dans une cellule tandem dual photosystème photoelectrocatalytique. Ces couches minces sont fabriquées par des méthodes robustes, économiques, et extensibles de sol-gel dip coating, et caractérisées par différentes techniques pour vérifier leurs caractéristiques physiques et leur performance photoelectrochimique. WO3 et BiVO4 sont optimises par nanostructuration, modification des couches interfaciales, et addition des co-catalyseurs de surface pour améliorer les performances et la stabilité, respectivement dans des conditions acides et neutres. Ces matériaux sont couples avec une photocathode de type p en oxyde de cuivre (II) pour compléter la réaction de dissociation de l'eau. La cellule photoelectrocatalytique ainsi construite est inspirée par la littérature concernant les systèmes innovateurs de tandem dual photosystèmes. Ce travail aboutit à l'une des seules cellules de dissociation de l'eau par photoelectrocatalyse à base des oxydes de métaux, fabriquée via des techniques faciles et économiques. L'efficacité de la production solaire-à-hydrogène est de 0.01%, et applied-bias-to-photon efficacité de 0.06%. / Solar water splitting by photoelectrocatalysis is a proposed long term solution for the production of renewable hydrogen. A wired dual photosystem photoelectrocatalytic cell is thermodynamically considered to possess the highest attainable solar-to-hydrogen efficiency. To realize a photoelectrocatalytic water splitting cell for practical application, facile fabrication methods and abundant low cost materials are essential. This research investigates tungsten trioxide (WO3) and bismuth vanadate (BiVO4) as thin film n-photoanodes to complete the oxygen evolution half reaction for water splitting application in a tandem dual photosystem photoeletrocatalyic water splitting cell. These thin films are fabricated by low cost, robust, scalable, sol-gel dip coating methods and characterized by several techniques to verify the physical characteristics and photochemical performance. WO3 and BiVO4 are optimized by nanostructuration, interfacial surface modification, and addition of surface co-catalysts to increase performance and stability in acidic and neutral conditions, respectively. These materials are coupled with a copper (II) oxide p-photocathode to drive the hydrogen evolution reaction in a photoelectrocatalyic cell to complete the water splitting reaction. The photoelectrocatalytic cell constructed is inspired by previous literature reports encompassing an innovative tandem dual photosystem approach. As a result, this research reports one of the only entirely metal oxide based photoelectrocatalytic water splitting cells, fabricated by inexpensive, unexcessive techniques, resulting in a solar-to-hydrogen efficiency of 0.01% and an applied bias to photon efficiency of 0.06%.
|
53 |
Investigating Sr₁₋ₓNbO₃ for H₂ evolution and as part of systems attempting water splitting under visible light irradiationEfstathiou, Paraskevi January 2014 (has links)
Two main subjects are addressed in this study. The ability of a bright red material with metallic behaviour to be used as a visible light photocatalyst for hydrogen evolution and the feasibility of visible light photocatalytic water splitting using Z-schemes constituted from different kinds of photocatalysts and materials used as mediators. Strontium niobate (Sr₁₋ₓNbO₃) is an A-site deficient perovskite with intense red colour. It is an unusual material that displays both metallic type conduction and- as we present- photocatalytic activity. Specifically, photocatalytic visible light hydrogen production with oxalic acid as a sacrificial reagent is achieved from this material even without the need for a co-catalyst or other alteration. This photocatalytic activity is screened with time and related to different parameters that might influence it, like crystal structure, surface area and surface chemistry. The crystal structure of strontium niobate is A site stoichiometry dependant and the materials acquires a cubic symmetry for Sr≤ 0.92 and orthorhombic for 0.92≤ Sr≤ 0.97. The change of crystal structure from cubic to orthorhombic symmetry seems to have a negative effect on the photocatalytic activity, as the NbO₆ octahedra become distorted and unfavourable for d-orbital overlapping. The highest photocatalytic activity is exhibited at the turning point of one structure to the other. Increase in the photocatalytic activity is also exhibited by enlarging the surface area through ball milling, nevertheless, a clear trend for surface area effect on activity is not obtained among samples with different Sr content. Additionally, an enrichment of Sr on the surface of strontium niobate is observed by XPS, which apart from the fact that seems to be a governing factor improving stability it is also considered a key point for the exhibited photocatalytic activity altogether. Full water splitting under visible light from Z-schemes is studied by fabricating three general categories of systems. These three different categories depend on the mediator used to fabricate the Z-schemes and are: redox couple Z-schemes (with Fe⁺³/Fe⁺²), solid mediator Z-schemes (with GO) and no mediator Z-schemes. The materials used as photocatalysts for the fabrication of the Z-schemes are: Sr₀.₉₂NbO₃ for hydrogen production and both WO₃ and BiVO₄ independently for oxygen production. The photocatalytic activity for water splitting is evaluated in production of hydrogen and oxygen with time and the ratio of their production rates is frequently checked to see whether the ideal hydrogen to oxygen 2:1 is achieved. The general idea acquired from the results of all the three types of systems is that, water splitting with Z-schemes is a complicated process and in most cases governed by many subreactions. More specifically, in all cases of redox couple Z-schemes we got hydrogen to oxygen ratio imbalances and with the most prominent one being the lack of hydrogen production. Thankful is the fact that a certain type of system, the one consisting of WO₃ as oxygen photocatalyst and Fe⁺² as initial mediator species gives results very close to the ideal one and with a high degree of reproducibility indicating this way the probable formation of a Z-scheme that has overcome more of the imbalances. In between the two other categories, solid mediator and no mediator Z-schemes, subreactions seem to be the governing factor hence imbalances are always present. A case study in the no mediator Z-schemes on an attempt to investigate sources of imbalances, reveals that a big source of imbalance is most probably from the trapping of protons from WO₃.
|
54 |
TiO2/Cu2O composite based on TiO2 NTPC photoanode for photoelectrochemical (PEC) water splitting under visible lightShi, Le 05 1900 (has links)
Water splitting through photoelectrochemical reaction is widely regarded as a major method to generate H2 , a promising source of renewable energy to deal with the energy crisis faced up to human being. Efficient exploitation of visible light in practice of water splitting with pure TiO2 material, one of the most popular semiconductor material used for photoelectrochemical water splitting, is still challenging. One dimensional TiO2 nanotubes is highly desired with its less recombination with the short distance for charge carrier diffusion and light-scattering properties. This work is based on TiO2 NTPC electrode by the optimized two-step anodization method from our group. A highly crystalized p-type Cu2O layer was deposited by optimized pulse potentiostatic electrochemical deposition onto TiO2 nanotubes to enhance the visible light absorption of a pure p-type TiO2 substrate and to build a p-n junction at the interface to improve the PEC performance. However, because of the real photocurrent of Cu2O is far away from its theoretical limit and also poor stability in the aqueous environment, a design of rGO medium layer was added between TiO2 nanotube and Cu2O layer to enhance the photogenerated electrons and holes separation, extend charge carrier diffusion length (in comparison with those of conventional pure TiO2 or Cu2O materials) which could significantly increase photocurrent
to 0.65 mA/cm2 under visible light illumination (>420 nm) and also largely improve the stability of Cu2O layer, finally lead to an enhancement of water splitting performance.
|
55 |
Controlled Synthesis of Nanostructured Two-dimensional Tin Disulfide and its Applications in Catalysis and OptoelectronicsGiri, Binod 07 May 2020 (has links)
Tin disulfide (SnS2) is a two-dimensional (2D) material with excellent properties and high prospects for low-cost solutions to catalytic and optoelectronic applications. In this work, vertical nanoflakes of SnS2 have been synthesized using custom-designed close space sublimation (CSS) system and investigated for applications in photoelectrochemical (PEC) water oxidation and metal-semiconductor-metal (MSM) photodetector. For the PEC application, vertical SnS2 nanoflakes grown directly on transparent conductive substrates have been used as photoanodes, which produce record photocurrents of 4.5 mA cm−2 for oxidation of a sulfite hole scavenger and 2.6 mA cm−2 for water oxidation without any hole scavenger, both at 1.23 VRHE in neutral electrolyte under simulated AM1.5G sunlight, and stable photocurrents for iodide oxidation in acidic electrolyte. This remarkable performance has been attributed to three main reasons: (1) high intrinsic carrier mobility of 330 cm2 V−1 s−1 and long photoexcited carrier lifetime of 1.3 ns in the nanoflakes, (2) the nanoflake height that balances the competing requirements of light absorption and charge transport, and (3) the unique stepped morphology of these nanoflakes that improves photocurrent by exposing multiple edge sites in every nanoflake. In another application, these SnS2 nanoflakes have been used to enhance the performance of lead sulfide quantum dot (PbS QDs) photodetectors by providing a high-mobility channel for photoexcited charges from PbS QDs, which results in 2 orders of magnitude enhancement in responsivity. The physical models and experimental findings presented in this dissertation can help engineer more cost-effective solutions for PEC water splitting and optoelectronics based on 2D metal dichalcogenides.
|
56 |
Solar-driven Hydrogen Production by the use of MIEC Membranes : A Techno-Economic AssessmentNilsson, Mattias January 2012 (has links)
This thesis comprises an assessment of a novel concept to produce high purity hydrogen using mixed oxide ion/electronic conductor (MIEC) membranes and energy provided by solar concentrators (i.e. parabolic troughs or parabolic dishes). The vision of this concept is that it will be used to produce tons of high purity hydrogen for fuel cells, which is a scarce commodity with an increasing demand from residential and transportation power generation applications. The MIEC membrane activates a steam reforming reaction between water and methane to produce hydrogen of high purity on the water side and syngas on the fuel side. Expectations are that this concept has cost advantages over other thermo-chemical water-dissociation methods, using a lower temperature and no electricity for the reaction process. The thesis’ focus is on techno-economic aspects of the concept, as part of an application process for project financing by the European Commission of Research and Innovation. The assessment in the thesis shows that the overall efficiency of the concept is expected to be very low. It also identifies the difficulties of providing stable working conditions for the concept. Suggestions to improve the concept are proposed to address the most urgent problems of the concept. These suggestions illuminate the opportunities that actually do exist to combine MIEC membranes, solar energy and thermo-chemical water splitting into a working concept. These improvements include using parabolic dishes instead of parabolic troughs, using furnaces with control systems and using a viable flow rate. The production capacity of high purity hydrogen is expected to be approximately 89 mg per minute in a membrane bundle (i.e. 150 thin membrane fibers with an oxygen permeation flux of 1 ml cm-2 min-1) if these improvements were implemented. This would imply that the studied concept needs further development to produce high purity hydrogen in quantities that could meet the shortage on the commercial fuel cell markets.
|
57 |
Anchoring a Molecular Iron Based Water Oxidation Catalyst onto a Carbon Paste ElectrodeBYSTRÖM, MARCUS January 2015 (has links)
This thesis concerns the development and the study of Iron-based water oxidation catalysts (WOCs) and how to immobilize them onto the hydrophobic surface of a carbon paste electrode. In the introductory chapter a general background of the field of water splitting and this thesis is given. In the second chapter, experimental performance is described from synthesis to measurements of a complete complex-doped electrode. The third chapter deals with the results and the discussion of the performed experiments. In chapter four, a descriptive conclusion of the obtained data is held. / Det här arbetet berör studien och utvecklingen utav järnbaserade katalysatorer, speciellt framtagna för för delning utav vatten. Utöver detta undersöks även om dessa katalysatorer (WOCs) kan immobiliseras på den hydrofoba ytan hos elektroder gjorda på kol-pasta. I det inledande kapitlet ges en generell bakgrund till området som berör delning utav vatten. I det andra kapitlet presenteras det experimentella utförandet utav synteser samt elektrokemiska mätningar som berörts under arbetets gång i jakten på en komplexdopad elektrod. I det tredje kapitlet diskuteras resultaten från mätningarna samt möjliga framtidsutsikter. I det fjärde kapitlet presenteras slutsatserna utav studien.
|
58 |
Design and Synthesis of Bismuth-based Layered Oxychloride Photocatalysts for Visible-Light-Driven Water Splitting / 可視光水分解のためのビスマス系層状酸塩化物光触媒の設計と合成Ozaki, Daichi 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23216号 / 工博第4860号 / 新制||工||1759(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 阿部 竜, 教授 陰山 洋, 教授 藤田 晃司 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
59 |
Novel Nanostructure Electrocatalysts for Oxygen Reduction and Hydrogen Evolution ReactionsLuo, Lin January 2019 (has links)
Philosophiae Doctor - PhD / The widespread use of fossil energy has been most convenient to the world,
while they also cause environmental pollution and global warming. Therefore, it
is necessary to develop clean and renewable energy sources, among which,
hydrogen is considered to be the most ideal choice, which forms the foundation of
the hydrogen energy economy, and the research on hydrogen production and fuel
cells involved in its production and utilization are naturally a vital research
endeavor in the world.
Electrocatalysts are one of the key materials for proton exchange member fuel
cells (PEMFCs) and water splitting. The use of electrocatalysts can effectively
reduce the reaction energy barriers and improve the energy conversion efficiency.
|
60 |
Razvoj koncepta dvomembranskog reaktora / Development of the double-membrane reactor conceptOmorjan Radovan 21 December 1998 (has links)
<p><strong>Apstrakt je obrađen tehnologijama za optičko prepoznavanje teksta (OCR).</strong></p><p>Cilj ovog rada je teorijska (računarska) analiza primenljivosti dvomembranskog reaktora za izvodenje povratnih gasnih reakcija. Specijalno, analizira se primenljivost dvomern- branske konhguracije za termolizu vode. Rezultati simulacije su pokazali značajnu pred- nost, u pogledu povečanja konverzije reaktanta iznad ravnotežne, dvomembranske u odnosu na jednomembransku konhguraciju, u slučaju kada su membrane najmanje pro- pustljive za reaktant. Rezultati neizotermske analize dvomembranskog reaktora su pokazali da je efekat energije aktivacije u odnosu na efekat toplote reakcije zanemarljiv, u oblasti vehkih Damköhler-ovih brojeva (odnos maksimalne brzine reakcije i protoka reaktanta u napoju). I za endotermne i za egzotermne reakcije, konverziona efikasnost opada sa porastom indeksa generisanja toplote (odnos toplotnog efekta reakcije i toplotnog kapaciteta reaktanta), a raste sa intenzitetom dovodenja odnosno odvodenja toplote. Što se tiče uticaja temperature napoja, kod endotermnih reakcija postoji optimum ako permeabilnosti komponenata opadaju sa temperaturom. Na bazi raspoloživih literaturnih podataka formulisan je izotermski model dvomembranskog reaktora za termolizu vode sa jednom membranom propustljivom za vodonik, a drugom propustljivom za kiseonik. Pokazano je da se pri dovoljno velikim vrednostima Damköhler-ovih broja i odnosa brzina (odnos maksimalne brzine permeacije za membranu i maksimalne brzine reakcije) u reaktoru može postići potpuna disocijacija vode. Zapaženo je postojanje optimalne raspodele ukupnog odnosa brzina izmedu dve membrane kao i, u slučaju uvodenja inerta u separacionu zonu, optimalne raspodele inerta između dve zone. Analiza je pokazala da dvomembranski reaktor predstavlja perspektivno rešenje problema termolize vode koje zaslužuje dalja teorijska i eksperimentaina istraživanja.</p> / <p><strong>Abstract was processed by technology for Optical character recognition (OCR).</strong></p><p>The aim of this study is a theoretical (computer) analysis of the applicability of a double-membrane reactor for reversible gas phase reactions. Particulaidy, the applicability of double-membrane configuration for the direct thermal water splitting is studied. The double-membrane configuration proved to be significantly superior over the single membrane configuration with respect to the equilibrium shift, in the case when the reac- tant is the slowest permeating component. By the non-isothermal analysis, it is shown that, in the region of high Damköhler numbers (the ratio of the maximal reaction rate to the feed reactant flow), the effect of activation energy is negligible when compared to the effect of reaction heat. The conversion efficiency is decreasing by the increase of the heat generation index (the ratio of reaction heat to reactant heat capacity) and increasing by the increase of the added or removed heat, for both endo- and exothermic processes. As to the feed temperature, an optimal value exists for endothermic reactions, if component permeabilities are decreasing functions of temperature. On the basis of the available literature data, the isothermal model of double-membrane reactor (one membrane permeable for hydrogen an the other for oxygen) for direct thermal splitting of water is formulated. It is shown that the complete water dissociation could be achieved at the high enough values of Damköhler number and of the rate ratio (the ratio of maximal permeability of membrane to the maximal reaction rate). The optimal distribution of the total rate ratio between the membranes as well as the optimal inert flow distribution could be determined. Double-membrane configuration seems to be a promising solution for the problem of direct thermal water splitting, deserving further theoretical and experimental investigations.</p>
|
Page generated in 0.245 seconds