Spelling suggestions: "subject:"[een] WSN"" "subject:"[enn] WSN""
121 |
Efficient Web Services for End-To-End Interoperability of Embedded SystemsKyusakov, Rumen January 2014 (has links)
As the number of Internet-connected devices rapidly grows, it has become ever more challenging to develop and maintain purpose-made tightly integrated distributed embedded systems. Instead, the Internet of Things (IoT) approach, based on standardized interfaces and open communication protocols, enables support for various applications with the possibility of extension to provide additional services that were not necessarily available at the initial deployment.This thesis presents methods and tools for the development of standard-based Web services for the Internet of Things. Some of the key challenges in using Web services on resource-constrained devices are due to the overhead of the communication protocols, which leads to the need for greater network bandwidth, processing power, and memory usage. A common solution to these problems is to use gateways that translate between the protocols used on one end of the connection (i.e. low-capability devices) and those on the other end (i.e. powerful Web servers). However, this increases the overall complexity of the system. The work presented herein answers the following research questions: 1) Is it feasible to deploy standard Web services on IoT systems without using application layer gateways? 2) What are the trade-offs in using Web services for end-to-end interoperability of resource-constrained embedded systems? 3) What levels of efficiency and functionality can be achieved using binary coding schemes for XML data exchange?The research questions are tested by building and evaluating several prototype IoT systems. These evaluations show that the use of Web services requires more powerful hardware (i.e. CPU and RAM) and a larger form factor in exchange for better interoperability compared to the use of ad hoc application protocols. The main challenge in employing embedded Web services is the large size of the messages, which is due to the use of verbose data formats such as XML. Although it is shown that it is possible to deploy XML-based Web services on low-capability devices without application layer gateways, this approach has severe performance limitations. Using the Efficient XML Interchange (EXI) binary coding scheme overcomes some of these limitations by substantially reducing the size of the XML messages. The main outcome of this thesis is the design and implementation of a software toolkit, called EXIP, for building EXI-based embedded Web services.The trade-offs in the use of embedded Web services are likely to change in the near future as the importance of application layer interoperability increases and IoT devices become faster, more energy efficient, and equipped with more memory. The dominating importance of interoperability can be seen in highly heterogeneous systems such as energy management systems (i.e. smart grids), where embedded Web services are already in use today. With this in mind, future research directions and extensions of this work include the development of performance optimization strategies for the EXIP toolkit to foster the expansion of embedded Web services to an even wider range of IoT applications. / Godkänd; 2014; 20140909 (rumkyu); Nedanstående person kommer att disputera för avläggande av teknologie doktorsexamen. Namn: Rumen Kyusakov Ämne: Industriell elektronik/Industrial Electronics Avhandling: Efficient Web Services for End-To-End Interoperability of Embedded Systems Opponent: Dr Frank Golatowski, Institute of Applied Microelements and CE, University of Rostock, Rostock-Warnemüende, Germany Ordförande: Biträdande professor Jens Eliasson, EISLAB, Institutionen för system- och rymdteknik, Luleå tekniska universitetet, Luleå Tid: Tisdag den 4 november 2014, kl. 13:00 Plats: A109, Luleå tekniska universitet / Embeddable EXI implementation in C, Architecture for Service-Oriented Process – Monitoring and Control, Arrowhead
|
122 |
A framework for evaluating countermeasures against sybil attacks in wireless sensor networksGovender, Servapalan 12 July 2011 (has links)
Although Wireless Sensor Networks (WSNs) have found a niche in numerous applications, they are constrained by numerous factors. One of these important factors is security in WSNs. There are various types of security attacks that WSNs are susceptible to. The focus of this study is centred on Sybil attacks, a denial of service attack. In this type of attack, rogue nodes impersonate valid nodes by falsely claiming to possess authentic identities, thereby rendering numerous core WSN operations ineffective. The diverse nature of existing solutions poses a difficult problem for system engineers wanting to employ a best fit countermeasure. This problem is the largely unanswered question posed to all system engineers and developers alike whose goal is to design/develop a secure WSN. Resolving this dilemma proves to be quite a fascinating task, since there are numerous factors to consider and more especially one cannot assume that every application is affected by all identified factors. A framework methodology presented in this study addresses the abovementioned challenges by evaluating countermeasure effectiveness based on theoretical and practical security factors. Furthermore, a process is outlined to determine the application’s engineering requirements and the framework also suggests what security components the system engineer ought to incorporate into the application, depending on the application’s risk profile. The framework then numerically aligns these considerations, ensuring an accurate and fairly unbiased best fit countermeasure selection. Although the framework concentrates on Sybil countermeasures, the methodology can be applied to other classes of countermeasures since it answers the question of how to objectively study and compare security mechanisms that are both diverse and intended for different application environments. The report documents the design and development of a comparative framework that can be used to evaluate countermeasures against Sybil attacks in wireless sensor networks based on various criteria that will be discussed in detail. This report looks briefly at the aims and description of the research. Following this, a literature survey on the body of knowledge concerning WSN security and a discussion on the proposed methodology of a specific design approach are given. Assumptions and a short list of factors that were considered are then described. Metrics, the taxonomy for WSN countermeasures, the framework and a formal model are developed. Risk analysis and the best fit methodology are also discussed. Finally, the results and recommendations are shown for the research, after which the document is concluded. / Dissertation (MEng)--University of Pretoria, 2011. / Electrical, Electronic and Computer Engineering / unrestricted
|
123 |
Effective and Adaptive Energy Restoration in WRSNs by a Mobile RobotAloqaily, Osama Ismail 04 November 2021 (has links)
The use of a mobile charger (MC) is a popular method to restore energy in wireless
rechargeable sensor networks(WRSN), whose effectiveness depends critically on the
recharging strategy employed by the MC. In this thesis, we propose a novel on-line
recharging mechanism strategy, called Continuous Local Learning (CLL), which predicts the current energy level of the sensor nodes and dynamically updates the schedule to visit the nodes before their batteries get depleted. The strategy is based on simple computations done by the MC with little memory requirements, and the communication is strictly local (between the MC and neighbouring nodes).
In spite of its simplicity, this strategy was experimentally shown to be highly effective
in keeping the network perpetually operating, ensuring that the number of sensing
holes (i.e., non-operational sensors due to battery depletion) and their duration are
very small at any time, and achieving immortality (i.e., no node ever becoming nonoperational) under many settings even in large networks.
We also studied the flexibility of CLL under a variety of network parameters, showing
its applicability in various contexts. We particularly focused on network size, data
rate, sensors’ battery-capacity, and speed of the MC, and studied their impact on operational size and disconnection time under a wide range of values. The experiments indicate the fact that the effectiveness of CLL holds under all considered settings.
We then compared the proposed solution with the popular class of static strategies
since they share with CLL the features of simplicity, strict local communication and small memory and computational requirements. Experimental results showed that
CLL outperforms these strategies in effectiveness. Not only is the number of sensors
that are operational at any time higher under CLL, but the average duration of a
sensing hole is also significantly lower.
Finally, we studied the adaptability of CLL to a network’s sudden changes, in particular
changes in data rate, which we call spikes. We studied the impact of spikes
parameters on the performance of CLL. Experimental results showed that CLL is
capable of reacting and adapting to these sudden changes with only a slight increase
in non-operational size and disconnection time.
|
124 |
Výzkum lokalizačních algoritmů pro bezdrátové senzorové sítě / Research of Localization Algorithms in Wireless Sensor NetworksHolešinský, Pavel January 2009 (has links)
This diploma thesis is focused on research of localization algorithms. Each developed localization algorithms are generally application specific. Because of application requirements diversity, many variants of localization algorithms exist. In case of finding appropriate localization algorithm for concrete application usability, existence of real condition simulation environment is useful. Development of this simulation environment was made simultaneously with both localization algorithms. At first, survey of available localization technic was performed and their summary was listed. Further work was aimed on research of two localization algorithms. Both of them use triangulation mechanism to determine unknown node position. This mechanism is based on measurement of distance to three reference points with known position. It would seem that both algorithms are similar, but simulation shows their difference and presents their suitability for diverse conditions.
|
125 |
Výzkum vlivu rozložení vstupní chyby na průběh lokalizačního procesu WSN / Research into influence of input error format on localization process WSNPečenka, Ondřej January 2010 (has links)
The diploma thesis is focused on two localization algorithms, iterative algorithm, and a linked algorithm simulated in MATLAB. Further, the investigation of the influence of input errors on the errors in localization of sensor nodes examined algorithms and explore possible relationships between the input errors and localization errors. Subsequently are submitted possible ways to optimize and their results.
|
126 |
Návrh senzorové sítě pro monitoring osob a věcí v budově / Proposal of wireless sensor network for indoor monitoring of people and objectsZáděra, Zdeněk January 2011 (has links)
This thesis describes the design of wireless sensor network (WSN) for monitoring of people and objects in a building. The work deals with issues of localization and tracking in sensor networks and algorithm implementation to sensor nodes. It also contains a description of the aplication requirements. These requirements form the basis for the proposal. The hardware part of the network consists of sensor nodes IRIS from Crossbow company. The work describes the properties of these nodes. Next part deals with of propagation model and design of the localization algorithm. The paper also describes the communication in the network. The thesis also includes a practical realization of the proposed network, the localization system and its testing. In the work is included a CD with the building schematic in AutoCAD and with source code of created applications.
|
127 |
Výzkum systému GPS pro lokalizaci bezdrátových senzorových uzlů / Research into GPS system used for Wireless Sensor Node LocalizationJuračka, Jan January 2013 (has links)
Theme of the thesis is research and possibility of using GPS system from localization in wireless sensor network. Paper deals with the accuracy and energy consumption of GPS localization. Thesis also solve using of localization in local anchor system. Theoretical part describes IEEE 802.15.4 standard, capability of used nodes and describe ways how to use RSSI value to resolve location
|
128 |
Srovnání agentích platforem pro bezdrátové senzorové sítě / Agents in Wireless Sensor NetworksMelo, Jakub January 2013 (has links)
This thesis deals with the agent platforms for wireless sensor networks. Wireless sensor networks together with the software and hardware tools used for their programming are introduced at the beginning of the thesis. The following chapter is devoted to the agents and their possible usage in wireless sensor networks. Two agent platforms Agilla and WSageNt are presented in the rest of the thesis. The end of the thesis presents the main differences between both platforms.
|
129 |
Diversity and Network Coded 5G Wireless Network Infrastructure for Ultra-Reliable CommunicationsSulieman, Nabeel Ibrahim 28 February 2019 (has links)
This dissertation is directed towards improving the performance of 5G Wireless Fronthaul Networks and Wireless Sensor Networks, as measured by reliability, fault recovery time, energy consumption, efficiency, and security of transmissions, beyond what is achievable with conventional error control technology. To achieve these ambitious goals, the research is focused on novel applications of networking techniques, such as Diversity Coding, where a feedforward network design uses forward error control across spatially diverse paths to enable reliable wireless networking with minimal delay, in a wide variety of application scenarios. These applications include Cloud-Radio Access Networks (C-RANs), which is an emerging 5G wireless network architecture, where Remote Radio Heads (RRHs) are connected to the centralized Baseband Unit (BBU) via fronthaul networks, to enable near-instantaneous recovery from link/node failures. In addition, the ability of Diversity Coding to recover from multiple simultaneous link failures is demonstrated in many network scenarios. Furthermore, the ability of Diversity Coding to enable significantly simpler and thus lower-cost routing than other types of restoration techniques is demonstrated.
Achieving high throughput for broadcasting/multicasting applications, with the required level of reliability is critical for the efficient operation of 5G wireless infrastructure networks. To improve the performance of C-RAN networks, a novel technology, Diversity and Network Coding (DC-NC), which synergistically combines Diversity Coding and Network Coding, is introduced. Application of DC-NC to several 5G fronthaul networks, enables these networks to provide high throughput and near-instant recovery in the presence of link and node failures. Also, the application of DC-NC coding to enhance the performance of downlink Joint Transmission-Coordinated Multi Point (JT-CoMP) in 5G wireless fronthaul C-RANs is demonstrated. In all these scenarios, it is shown that DC-NC coding can provide efficient transmission and reduce the resource consumption in the network by about one-third for broadcasting/multicasting applications, while simultaneously enabling near-instantaneous latency in recovery from multiple link/node failures in fronthaul networks. In addition, it is shown by applying the DC-NC coding, the number of redundant links that uses to provide the required level of reliability, which is an important metric to evaluate any protection system, is reduced by about 30%-40% when compared to that of Diversity Coding.
With the additional goal of further reducing of the recovery time from multiple link/node failures and maximizing the network reliability, DC-NC coding is further improved to be able to tolerate multiple, simultaneous link failures with less computational complexity and lower energy consumption. This is accomplished by modifying Triangular Network Coding (TNC) and synergistically combining TNC with Diversity Coding to create enhanced DC-NC (eDC-NC), that is applied to Fog computing-based Radio Access Networks (F-RAN) and Wireless Sensor Networks (WSN). Furthermore, it is demonstrated that the redundancy percentage for protecting against n link failures is inversely related to the number of source data streams, which illustrates the scalability of eDC-NC coding. Solutions to enable synchronized broadcasting are proposed for different situations.
The ability of eDC-NC coding scheme to provide efficient and secure broadcasting for 5G wireless F-RAN fronthaul networks is also demonstrated. The security of the broadcasting data streams can be obtained more efficiently than standardized methods such as Secure Multicasting using Secret (Shared) Key Cryptography.
|
130 |
IoT Sensors for Industrial and Agricultural Applications: Development of Wireless Network and Process ControlXiaofan Jiang (9755084) 14 December 2020 (has links)
As the new paradigm of data collection enabled by the advancements in wireless technology and digital electronics, small sensing devices have started to be used in everyday life. These devices are capable of sensing, computing, communicating, and forming a wireless sensor network (WSN) which is necessary to provide sensing services and to monitor various conditions. In addition to WSNs, the idea of Internet of Things (IoT) has started to draw more attention. IoT is defined as an interconnection between identifiable devices within the internet for sensing and monitoring processes. This dissertation addresses the development of wireless network and process control for two challenging IoT applications, namely smart agriculture and industrial lyophilization.<div><br><div>Smart agriculture refers to the concept of using modern technology to increase the quantity and quality of agricultural products. This dissertation presents a novel hybrid large-area IoT network by combining the low-power wide-area network (LPWAN) as well as ultra-low-power wireless personal area networks (WPAN) that delivers wide-area coverage while maintaining low-power operation. </div><div><br></div><div>Lyophilization is the process of removing water content from a material with the objective of increasing its stability and, hence, its shelf life. Continuous inline process tracking is imperative to a successful lyophilization process in industrial pharmaceuticals. To address this need, this dissertation presents two wireless sensing systems that are capable of monitoring lyophilization process with detailed design and demonstration<br></div></div>
|
Page generated in 0.1189 seconds