• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 136
  • 22
  • Tagged with
  • 158
  • 158
  • 148
  • 83
  • 82
  • 34
  • 33
  • 20
  • 20
  • 16
  • 11
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

[en] AN ALGORITHM TO GENERATE RANDOM SPHERE PACKS IN ARBITRARY DOMAINS / [pt] UM ALGORITMO GERAÇÃO RANDÔMICA DE ESFERAS EM DOMÍNIOS ARBITRÁRIOS

ELIAS FUKIM LOZANO CHING 30 April 2015 (has links)
[pt] O Método dos Elementos Discretos (DEM) com base em esferas pode fornecer aproximações para diversos fenômenos físicos complexos, tanto em escala micro quanto macro. Normalmente uma simulação DEM começa com um arranjo de partículas esféricas no interior de um determinado recipiente. Para domínios gerais a criação deste pacote de esferas pode ser complexo e demorado, especialmente se ele deve respeitar requisitos de precisão e de estabilidade da simulação. O objetivo deste trabalho é estender uma solução de empacotamento de discos 2D para gerar conjuntos aleatórios compostos por partículas esféricas não sobrepostas. O algoritmo construtivo proposto utiliza a técnica de frente de avanço, onde as esferas são inseridas uma a uma no pacote, de acordo com uma estratégia gulosa baseada nas partículas previamente inseridas. A técnica de frente de avanço requer a existência de um conjunto inicial de esferas que definem a fronteira do recipiente. Outra extensão importante proposta aqui é uma generalização do algoritmo para lidar com objetos arbitrários definidos por uma malha triangular qualquer. Este trabalho apresenta também alguns resultados que permitem algumas conclusões e sugestões de trabalhos futuros. / [en] The Discrete Element Method (DEM) based on spheres can provide acceptable approximations to many complex physical phenomena both in micro and macro scale. Normally a DEM simulation starts with an arrangement of spherical particles pack inside a given container. For general domains the creation of the sphere pack may be complex and time consuming, especially if the pack must comply with accuracy and stability requirements of the simulation. The objective of this work is to extend a 2D disk packing solution to generate random assemblies composed by non-overlapping spherical particles. The constructive algorithm, presented here, uses the advancing front strategy where spheres are inserted one-by-one in the pack, according to a greed strategy based on the previously inserted particles. Advance front strategy requires the existence of an initial set of spheres that defines the boundary of the pack region. Another important extension presented here is the generalization of algorithm to deal with arbitrary objects defined by a triangular boundary mesh. This work presents also some results that allow for some conclusions and suggestions of further work.
22

[en] MOTION ESTIMATION METHOD WITH SUBPIXEL RESOLUTION OF CODEC H264/AVC / [pt] MÉTODOS DE ESTIMAÇÃO DE MOVIMENTO COM RESOLUÇÃO EM SUBPIXEL NO CODEC H264/AVC

JULIANO MELQUIADES VIANELLO 23 July 2007 (has links)
[pt] Foi desenvolvido pelos grupos MPEG (Moving Picture Expert Group) e VCEG (Video Coding Expert Group) um novo padrão de codificação de vídeo denominado AVC (Advanced Vídeo Coding). Este padrão fornece uma capacidade de compressão maior de vídeo se comparado com os padrões anteriores. A estimação de movimento é a fase da codificação de vídeo que demanda maior tempo de processamento. Estimação de movimento é computacionalmente custosa para H.264/AVC se o método Full Search [1] é usado. A fim de reduzir o tempo de codificação, o software de referência JM 9.8 adota um rápido método de estimação de movimento para pixel inteiro chamado UMHexagonS e um método para pixel fracionário chamado CBFPS. Um método proposto por Xiaoquan Yi, Jun Zhang, Nam Ling e Weijia Shang [2] chamado aqui, por simplicidade, de P021 apresenta, em comparação com o software de referência JM, uma melhor e simplificada forma de estimação de movimento para aumentar a velocidade do processo de codificação e manter a qualidade visual do vídeo. Visando diminuir ainda mais o tempo de processamento e o custo computacional apresentada pelos métodos citados anteriormente, o que é necessário principalmente para aplicações de codificação de vídeo móveis, como celulares e palm tops e aplicações de tempo real, como videoconferência, este trabalho propõe um método de estimação de movimento que consiste em evitar o processamento de blocos que não se beneficiam da pesquisa de metade de pixel. Após a execução dos testes, pode-se constatar que com uma qualidade de vídeo semelhante, o método proposto reduz o tempo de processamento em 76,17%, 75,95% e 11,74% em média quando comparado com os métodos Full Search, JM 98 e P021. Além disso, este método praticamente preserva a taxa de bits, apresentando um pequeno aumento de 8,72% , 8,06% e 8,02% em média quando comparado com os mesmos métodos. Isto representa, em nossa opinião, um pequeno preço a ser pago, considerando os benefícios em termos de tempo de processamento. / [en] The MPEG (Moving Picture Experts Group) and the VCEG (Video Coding Experts Group) have developed a new video compression standard entitled AVC (Advanced Video Coding). This standard offers the capacity of video compression greater than the previous standards.The motion estimation which is a phase of the video compression is extremely computer-intensive and therefore demands most of the processing time. When Full Search [1] method is used for H.264/AVC, this process is extremely expensive. In order to reduce encoding time, the reference software JM (throughout this work, JM98 is the version used) has respectively adopted a fast motion estimation method for the integer pixel called UMHexagonS and a method for the sub- pixel called CBFPS. A method proposed by Xiaoquan Yi, Jun Zhang, Nam Ling e Weijia Shang [2] called here P021 (as referenced by the Joint Video Team) has shown, when compared to the reference software JM, a simple way of motion estimation that increases the speed of coding process while maintaining the video visual quality. In order to decrease the processing time and computational cost of these methods, which are: i) particularly needed in mobile video coding applications such as mobile phones and palmtops; ii) in real time applications such as videoconference, this work proposes a motion estimation method that eliminates the processing of blocks that does not produce benefits for the half-pixel search. The simulation results show that the proposed method reduces the processing time in 76,17%, 75,95% and 11,74% in average when respectively compared with Full Search, JM98 and P021 methods, without relevant impact in video quality. Besides, this method produces a bits rate increase of 8,72% , 8,06% e 8,02% in average when compared with the same methods. This is in our opinion, an inexpensive price to be paid when the time benefits are considered.
23

[en] ANALYSIS AND DEVELOPMENT OF A STAR-TREE MODEL ESTIMATION SOFTWARE / [pt] ANÁLISE E DESENVOLVIMENTO DE SISTEMA DE ESTIMAÇÃO DE MODELOS DA CLASSE STAR-TREE

BERNARDO DA ROCHA SPINDEL 10 September 2009 (has links)
[pt] Na análise de séries temporais, os modelos lineares amplamente difundidos e utilizados, como regressões lineares e modelos auto-regressivos, não são capazes de capturar sua natureza muitas vezes não-linear,oferecendo resultados insatisfatórios. Séries financeiras, por exemplo, apresentam este tipo de comportamento. Ao longo dos últimos anos, houve o surgimento de muitos modelos não lineares para análise de séries temporais, tanto estatísticos como de inteligência computacional, baseados em redes neurais. Esta dissertação se propõe a analisar a performance do modelo STAR-Tree sob diversos cenários de conFiguração, parametrização e metodologias de estimação. Esta classe de modelos subdivide os dados de uma série temporal em regiões distintas que atendem critérios especificados em funções chamadas de pertinências. A cada região é atribuído um modelo linear auto-regressivo. Cada dado estimado pode estar em alguma das regiões com algum grau de pertinência determinado pelas funções fornecidas pelo modelo principal. Fatores como a proximidade das regiões, a suavidade das funções de pertinência e a falta de diversidade nos dados podem dificultar a estimação dos modelos. Para avaliar a qualidade das estimações sob os diversos cenários, foi construído um sistema capaz de gerar séries artificiais, importar séries externas, estimá-las sob a modelagem STAR-Tree, e gerar simulações de Monte Carlo que avaliam a qualidade da estimação de parâmetros e a capacidade de detecção das estruturas de árvore do modelo. Ele foi utilizado como ferramenta para realizar as análises presentes na dissertação, e permitiu que se testassem diferentes conFigurações de métodos e parametrizações com facilidade. / [en] In time series analysis, linear models that have been broadly used, such as linear regressions and auto-regressive models, are not able to capture the some times non linear nature of some data, offering poor estimation results. Financial series, for instance, show that kind of behavior. Over the last years, a great number of non linear models have been developed in order to analyze time series, some of them statistical, others based on computational intelligence techniques such as neural networks. The purpose of this dissertation is to analyze the performance of the STAR-Tree model under distinct scenarios that differ in model specification, parameterization and estimation methodologies. This class of models splits time series data into individual regions which fulfill the criteria set up by functions called pertinences. A linear model then is selected for each one of those regions. Each estimated data point can belong to one of the mentioned regions with some degree of pertinence, supplied by the above mentioned pertinence functions. Aspects like the proximity between regions, the smoothness of the pertinence functions and the lack of diversity in real data can significantly affect the estimation of models. In order to evaluate the quality of the estimations under the different proposed scenarios, a software was developed with the capabilities of generating artificial time series, importing external series, estimating them under the STAR-Tree model, and generating Monte Carlo simulations that evaluate the quality of parameter estimation and the tree structure detection capability of the model. The software was used as the single tool to generate this dissertation’s analyses, and allowed that different model specifications and methods could be tested without difficulty.
24

[en] MODELING NONLINEAR TIME SERIES WITH A TREE-STRUCTURED MIXTURE OF GAUSSIAN MODELS / [pt] MODELANDO SÉRIES TEMPORAIS NÃO-LINEARES ATRAVÉS DE UMA MISTURA DE MODELOS GAUSSIANOS ESTRUTURADOS EM ÁRVORE

EDUARDO FONSECA MENDES 20 March 2007 (has links)
[pt] Neste trabalho um novo modelo de mistura de distribuições é proposto, onde a estrutura da mistura é determinada por uma árvore de decisão com transição suave. Modelos baseados em mistura de distribuições são úteis para aproximar distribuições condicionais desconhecidas de dados multivariados. A estrutura em árvore leva a um modelo que é mais simples, e em alguns casos mais interpretável, do que os propostos anteriormente na literatura. Baseando-se no algoritmo de Esperança- Maximização (EM), foi derivado um estimador de quasi- máxima verossimilhança. Além disso, suas propriedades assintóticas são derivadas sob condições de regularidades. Uma estratégia de crescimento da árvore, do especifico para o geral, é também proposta para evitar possíveis problemas de identificação. Tanto a estimação quanto a estratégia de crescimento são avaliados em um experimento Monte Carlo, mostrando que a teoria ainda funciona para pequenas amostras. A habilidade de aproximação universal é ainda analisada em experimentos de simulação. Para concluir, duas aplicações com bases de dados reais são apresentadas. / [en] In this work a new model of mixture of distributions is proposed, where the mixing structure is determined by a smooth transition tree architecture. Models based on mixture of distributions are useful in order to approximate unknown conditional distributions of multivariate data. The tree structure yields a model that is simpler, and in some cases more interpretable, than previous proposals in the literature. Based on the Expectation-Maximization (EM) algorithm a quasi-maximum likelihood estimator is derived and its asymptotic properties are derived under mild regularity conditions. In addition, a specific-to-general model building strategy is proposed in order to avoid possible identification problems. Both the estimation procedure and the model building strategy are evaluated in a Monte Carlo experiment, which give strong support for the theorydeveloped in small samples. The approximation capabilities of the model is also analyzed in a simulation experiment. Finally, two applications with real datasets are considered.
25

[en] RANKING OF WEB PAGES BY LEARNING MULTIPLE LATENT CATEGORIES / [pt] CLASSIFICAÇÃO DE PÁGINAS WEB POR APRENDIZAGEM DE MÚLTIPLAS CATEGORIAS LATENTES

FRANCISCO BENJAMIM FILHO 17 May 2012 (has links)
[pt] O crescimento explosivo e a acessibilidade generalizada da World Wide Web (WWW) levaram ao aumento da atividade de pesquisa na área da recuperação de informação para páginas Web. A WWW é um rico e imenso ambiente em que as páginas se assemelham a uma comunidade grande de elementos conectada através de hiperlinks em razão da semelhança entre o conteúdo das páginas, a popularidade da página, a autoridade sobre o assunto e assim por diante, sabendo-se que, em verdade, quando um autor de uma página a vincula à outra, está concebendo-a como importante para si. Por isso, a estrutura de hiperlink da WWW é conhecida por melhorar significativamente o desempenho das pesquisas para além do uso de estatísticas de distribuição simples de texto. Nesse sentido, a abordagem Hyperlink Induced Topic Search (HITS) introduz duas categorias básicas de páginas Web, hubs e autoridades, que revelam algumas informações semânticas ocultas a partir da estrutura de hiperlink. Em 2005, fizemos uma primeira extensão do HITS, denominada de Extended Hyperlink Induced Topic Search (XHITS), que inseriu duas novas categorias de páginas Web, quais sejam, novidades e portais. Na presente tese, revisamos o XHITS, transformando-o em uma generalização do HITS, ampliando o modelo de duas categorias para várias e apresentando um algoritmo eficiente de aprendizagem de máquina para calibrar o modelo proposto valendo-se de múltiplas categorias latentes. As descobertas aqui expostas indicam que a nova abordagem de aprendizagem fornece um modelo XHITS mais preciso. É importante registrar, por fim, que os experimentos realizados com a coleção ClueWeb09 25TB de páginas da WWW, baixadas em 2009, mostram que o XHITS pode melhorar significativamente a eficácia da pesquisa Web e produzir resultados comparáveis aos do TREC 2009/2010 Web Track, colocando-o na sexta posição, conforme os resultados publicados. / [en] The rapid growth and generalized accessibility of the World Wide Web (WWW) have led to an increase in research in the field of the information retrieval for Web pages. The WWW is an immense and prodigious environment in which Web pages resemble a huge community of elements. These elements are connected via hyperlinks on the basis of similarity between the content of the pages, the popularity of a given page, the extent to which the information provided is authoritative in relation to a given field etc. In fact, when the author of a Web page links it to another, s/he is acknowledging the importance of the linked page to his/her information. As such the hyperlink structure of the WWW significantly improves research performance beyond the use of simple text distribution statistics. To this effect, the HITS approach introduces two basic categories of Web pages, hubs and authorities which uncover certain hidden semantic information using the hyperlink structure. In 2005, we made a first extension of HITS, called Extended Hyperlink Induced Topic Search (XHITS), which inserted two new categories of Web pages, which are novelties and portals. In this thesis, we revised the XHITS, transforming it into a generalization of HITS, broadening the model from two categories to various and presenting an efficient machine learning algorithm to calibrate the proposed model using multiple latent categories. The findings we set out here indicate that the new learning approach provides a more precise XHITS model. It is important to note, in closing, that experiments with the ClueWeb09 25TB collection of Web pages, downloaded in 2009, demonstrated that the XHITS is capable of significantly improving Web research efficiency and producing results comparable to those of the TREC 2009/2010 Web Track.
26

[en] THE OPTIMIZATION OF PETROLEUM FIELD EXPLORATION ALTERNATIVES USING EVOLUTIONARY COMPUTATION / [pt] OTIMIZAÇÃO DE ALTERNATIVAS PARA DESENVOLVIMENTO DE CAMPO DE PETRÓLEO UTILIZANDO COMPUTAÇÃO EVOLUCIONÁRIA

LUCIANA FALETTI ALMEIDA 21 May 2003 (has links)
[pt] Esta dissertação investiga um sistema baseado em algoritmos genéticos e algoritmos culturais, aplicado ao processo de desenvolvimento de um campo de petróleo. O desenvolvimento de um campo de petróleo consiste, neste caso, da disposição de poços num reservatório petrolífero, já conhecido e delimitado, que permita maximizar o Valor Presente Líquido. Uma disposição de poços define a quantidade e posição de poços produtores e injetores e do tipo de poço (horizontalou vertical) a serem empregados no processo de exploração. O objetivo do trabalho é avaliar o desempenho de Algoritmos Genéticos e Algoritmos Culturais como métodos de apoio à decisão na otimização de alternativas de produção em reservatórios petrolíferos. Determinar a localização de novos poços de petróleo em um reservatório é um problema complexo que depende de propriedades do reservatório e critérios econômicos, entre outros fatores. Para que um processo de otimização possa ser aplicado nesse problema, é necessário definir uma função objetivo a ser minimizada ou maximizada pelo processo. No problema em questão, a função objetivo a ser maximizada é o Valor Presente Líquido (VPL). Para se estabelecer o VPL, subtrai-se os gastos com a exploração do valor correspondente ao volume de petróleo estimado da reserva. Devido à complexidade do perfil de produção de petróleo, exige-se a utilização de simuladores de reservatório para esta estimativa. Deste modo, um simulador de reservatórios é parte integrante da função de avaliação. O trabalho de pesquisa foi desenvolvido em quatro etapas: um estudo sobre a área de exploração de petróleo; um estudo dos modelos da inteligência computacional empregados nesta área; a definição e implementação de um modelo genético e cultural para o desenvolvimento de campo petrolífero e o estudo de caso. O estudo sobre a área de exploração de campo de petróleo envolveu a teoria necessária para a construção da função objetivo. No estudo sobre as técnicas de inteligência computacional definiu-se os conceitos principais sobre Algoritmo Genético e Algoritmo Cultural empregados nesta dissertação. A modelagem de um Algoritmo Genético e Cultural constitui no emprego dos mesmos, para que dado um reservatório petrolífero, o sistema tenha condições de reconhecê-lo e desenvolvê-lo, ou seja, encontrar a configuração (quantidade, localização e tipo de poços) que atinja um maior Valor Presente Líquido. Os resultados obtidos neste trabalho indicam a viabilidade da utilização de Algoritmos Genéticos e Algoritmos Culturais no desenvolvimento de campos de petróleo. / [en] This dissertation investigates a system based in genetic algorithms and cultural algorithms, applied to the development process of a petroleum field. The development of a petroleum field consists in the placement of wells in an already known and delimited petroleum reservoir, which allows maximizing the Net Present Value. A placement of wells defines the quantity and position of the producing wells, the injecting wells, and the wells type (horizontal or vertical) to be used in the exploration process. The objective of this work is to evaluate the performance of Genetic Algorithms and Cultural Algorithms as decision support methods on the optimization of production alternatives in petroleum reservoirs. Determining the new petroleum wells location in a reservoir is a complex problem that depends on the properties of the reservoir and on economic criteria, among other factors. In order to an optimization process to be applied to this problem, it s necessary to define a target function to be minimized or maximized by the process. In the given problem, the target function to be maximized is the Net Present Value (NPV). In order to establish the NPV, the exploration cost correspondent to the estimated reservoir petroleum volume is deducted. The complexity of the petroleum s production profile implies on the use of reservoirs simulators for this estimation. In this way, a reservoir simulator is an integrant part of the evaluation function. The research work was developed in four phases: a study about the petroleum exploration field; a study about the applied computational intelligence models in this area; the definition and implementation of a genetic and cultural model for the development of petroliferous fields and the case study. The study about the petroleum exploration field involved all the necessary theory for the building of the target function. In the study about the computational intelligence techniques, the main concepts about the Genetic Algorithms and Cultural Algorithms applied in this dissertation were defined. The modeling of Genetic and Cultural Algorithms consisted in applying them so that, given a petroleum reservoir, the system is capable of evolve and find configurations (quantity, location and wells type) that achieve greater Net Present Values. The results obtained in this work, indicate that the use of Genetic Algorithms and Cultural Algorithms in the development of petroleum fields is a promising alternative.
27

[en] EVOLUTIONARY INFERENCE APPROACHES FOR ADAPTIVE MODELS / [pt] ABORDAGENS DE INFERÊNCIA EVOLUCIONÁRIA EM MODELOS ADAPTATIVOS

EDISON AMERICO HUARSAYA TITO 17 July 2003 (has links)
[pt] Em muitas aplicações reais de processamento de sinais, as observações do fenômeno em estudo chegam seqüencialmente no tempo. Consequentemente, a tarefa de análise destes dados envolve estimar quantidades desconhecidas em cada observação concebida do fenômeno. Na maioria destas aplicações, entretanto, algum conhecimento prévio sobre o fenômeno a ser modelado está disponível. Este conhecimento prévio permite formular modelos Bayesianos, isto é, uma distribuição a priori sobre as quantidades desconhecidas e uma função de verossimilhança relacionando estas quantidades com as observações do fenômeno. Dentro desta configuração, a inferência Bayesiana das quantidades desconhecidas é baseada na distribuição a posteriori, que é obtida através do teorema de Bayes. Infelizmente, nem sempre é possível obter uma solução analítica exata para esta distribuição a posteriori. Graças ao advento de um formidável poder computacional a baixo custo, em conjunto com os recentes desenvolvimentos na área de simulações estocásticas, este problema tem sido superado, uma vez que esta distribuição a posteriori pode ser aproximada numericamente através de uma distribuição discreta, formada por um conjunto de amostras. Neste contexto, este trabalho aborda o campo de simulações estocásticas sob a ótica da genética Mendeliana e do princípio evolucionário da sobrevivência dos mais aptos. Neste enfoque, o conjunto de amostras que aproxima a distribuição a posteriori pode ser visto como uma população de indivíduos que tentam sobreviver num ambiente Darwiniano, sendo o indivíduo mais forte, aquele que possui maior probabilidade. Com base nesta analogia, introduziu-se na área de simulações estocásticas (a) novas definições de núcleos de transição inspirados nos operadores genéticos de cruzamento e mutação e (b) novas definições para a probabilidade de aceitação, inspirados no esquema de seleção, presente nos Algoritmos Genéticos. Como contribuição deste trabalho está o estabelecimento de uma equivalência entre o teorema de Bayes e o princípio evolucionário, permitindo, assim, o desenvolvimento de um novo mecanismo de busca da solução ótima das quantidades desconhecidas, denominado de inferência evolucionária. Destacamse também: (a) o desenvolvimento do Filtro de Partículas Genéticas, que é um algoritmo de aprendizado online e (b) o Filtro Evolutivo, que é um algoritmo de aprendizado batch. Além disso, mostra-se que o Filtro Evolutivo, é em essência um Algoritmo Genético pois, além da sua capacidade de convergência a distribuições de probabilidade, o Filtro Evolutivo converge também a sua moda global. Em conseqüência, a fundamentação teórica do Filtro Evolutivo demonstra, analiticamente, a convergência dos Algoritmos Genéticos em espaços contínuos. Com base na análise teórica de convergência dos algoritmos de aprendizado baseados na inferência evolucionária e nos resultados dos experimentos numéricos, comprova-se que esta abordagem se aplica a problemas reais de processamento de sinais, uma vez que permite analisar sinais complexos caracterizados por comportamentos não-lineares, não- gaussianos e nãoestacionários. / [en] In many real-world signal processing applications, the phenomenon s observations arrive sequentially in time; consequently, the signal data analysis task involves estimating unknown quantities for each phenomenon observation. However, in most of these applications, prior knowledge about the phenomenon being modeled is available. This prior knowledge allows us to formulate a Bayesian model, which is a prior distribution for the unknown quantities and the likelihood functions relating these quantities to the observations. Within these settings, the Bayesian inference on the unknown quantities is based on the posterior distributions obtained from the Bayes theorem. Unfortunately, it is not always possible to obtain a closed-form analytical solution for this posterior distribution. By the advent of a cheap and formidable computational power, in conjunction with some recent developments in stochastic simulations, this problem has been overcome, since this posterior distribution can be obtained by numerical approximation. Within this context, this work studies the stochastic simulation field from the Mendelian genetic view, as well as the evolutionary principle of the survival of the fittest perspective. In this approach, the set of samples that approximate the posteriori distribution can be seen as a population of individuals which are trying to survival in a Darwinian environment, where the strongest individual is the one with the highest probability. Based in this analogy, we introduce into the stochastic simulation field: (a) new definitions for the transition kernel, inspired in the genetic operators of crossover and mutation and (b) new definitions for the acceptation probability, inspired in the selection scheme used in the Genetic Algorithms. The contribution of this work is the establishment of a relation between the Bayes theorem and the evolutionary principle, allowing the development of a new optimal solution search engine for the unknown quantities, called evolutionary inference. Other contributions: (a) the development of the Genetic Particle Filter, which is an evolutionary online learning algorithm and (b) the Evolution Filter, which is an evolutionary batch learning algorithm. Moreover, we show that the Evolution Filter is a Genetic algorithm, since, besides its capacity of convergence to probability distributions, it also converges to its global modal distribution. As a consequence, the theoretical foundation of the Evolution Filter demonstrates the convergence of Genetic Algorithms in continuous search space. Through the theoretical convergence analysis of the learning algorithms based on the evolutionary inference, as well as the numerical experiments results, we verify that this approach can be applied to real problems of signal processing, since it allows us to analyze complex signals characterized by non-linear, nongaussian and non-stationary behaviors.
28

[en] EVOLUTIONARY SYNTHESIS IN NANOTECHNOLOGY / [pt] SÍNTESE EVOLUCIONÁRIA EM NANOTECNOLOGIA

LEONE PEREIRA MASIERO 22 August 2006 (has links)
[pt] A Nanotecnologia teve seus primeiros conceitos introduzidos pelo físico americano Richard Feynman em 1959, em sua famosa palestra intitulada There´s plenty of room at the bottom (Ainda há muito espaço sobrando no fundo). Já a Inteligência Computacional tem sido utilizada com sucesso em diversas áreas no meio acadêmico e industrial. Este trabalho investiga o potencial dos Algoritmos Genéticos na otimização e síntese de dispositivos e estruturas na área de Nanotecnologia, através de 3 tipos de aplicações distintas: síntese de circuitos eletrônicos moleculares, projeto de novos polímeros condutores e otimização de parâmetros de OLEDs (Organic Light-Emitting Diodes). A síntese de circuitos eletrônicos moleculares é desenvolvida com base em Hardware Evolucionário (EHW - Evolvable Hardware) e tem como principais elementos dois dispositivos moleculares simulados em SPICE: o diodo molecular e o transistor molecular. O projeto de novos polímeros condutores é baseado em uma metodologia que combina uma aproximação tight-binding (hamiltoniano de Hückel simplificado) que representa a estrutura eletrônica de uma cadeia polimérica, empregando um AG com avaliação distribuída como mecanismo de síntese. Finalmente, a otimização de parâmetros de OLEDs é desenvolvida por meio de um método que modela o comportamento elétrico do dispositivo com multicamadas, onde cada camada possui uma proporção de MTE (material transportador de elétrons) e uma proporção de MTB (material transportador de buracos). As aplicações apresentam resultados que comprovam que o apoio de técnicas de Inteligência Computacional como os Algoritmos Genéticos no mundo nanométrico pode trazer benefícios para a criação e o desenvolvimento de novas tecnologias. / [en] The first Nanotechnology concepts were introduced by the American physicist Richard Feynman in 1959, in his famous lecture entitled There´s plenty of room at the bottom. Computational Intelligence has been successfully used in various areas in the academic and industrial worlds. This work investigates the potential of Genetic Algorithms in the optimization and synthesis of devices and structures in the Nanotechnology domain, by means of 3 types of distinct applications: synthesis of molecular electronic circuits, design of new conducting polymers and optimization of OLEDs (Organic Light-Emitting Diodes) parameters. The synthesis of molecular electronic circuits is developed based on the Evolvable Hardware (EHW) paradigm and has as main elements two molecular devices simulated in SPICE: the molecular diode and the molecular transistor. The design of new conducting polymers is based on a methodology that combines an approximated tight-binding (simplified Huckel Hamiltonian) that represents the electronic structure of a polymer chain, using a GA with distributed evaluation as the synthesis mechanism. Finally, the optimization of OLEDs parameters is developed by means of a method that models the electric behavior of multi-layer devices, where each layer has a ratio of electron transport material (ETM) to hole transport material (HTM). The applications present results that demonstrate that the use of Computational Intelligence techniques, as Genetic Algorithms, in the nanometer world can bring benefits for the creation and development of new technologies.
29

[en] APPLYING GENETIC ALGORITHMS TO THE PRODUCTION SCHEDULING OF A PETROLEUM / [es] PROGRAMACIÓN AUTOMÁTICA DE LA PRODUCCIÓN EN REFINERÍAS DE PETRÓLEO UTILIZANDO ALGORITMOS GENÉTICOS / [pt] PROGRAMAÇÃO AUTOMÁTICA DA PRODUÇÃO EM REFINARIAS DE PETRÓLEO UTILIZANDO ALGORITMOS GENÉTICOS

MAYRON RODRIGUES DE ALMEIDA 19 July 2001 (has links)
[pt] O objetivo desta dissertação é desenvolver um método de solução baseado em Algoritmos Genéticos (GAs) aliado a um Sistema Baseado em Regras para encontrar e otimizar as soluções geradas para o problema de programação da produção de Óleos Combustíveis e Asfalto na REVAP (Refinaria do Vale do Paraíba). A refinaria é uma planta multiproduto, com dois estágios de máquinas em série - um misturador e um conjunto de tanques, com restrição de recursos e operando em regime contínuo. Foram desenvolvidos neste trabalho dois modelos baseados em algoritmos genéticos que são utilizados para encontrar a seqüência e os tamanhos dos lotes de produção dos produtos finais. O primeiro modelo proposto utiliza uma representação direta da programação da produção em que o horizonte de programação é dividido em intervalos discretos de um hora. O segundo modelo proposto utiliza uma representação indireta que é decodificada para formar a programação da produção. O Sistema Baseado em Regras é utilizado na escolha dos tanques que recebem a produção e os tanques que atendem à demanda dos diversos centros consumidores existentes. Um novo operador de mutação - Mutação por Vizinhança - foi proposto para minimizar o número de trocas operacionais na produção. Uma técnica para agregação de múltiplos objetivos, baseado no Método de Minimização de Energia, também foi incorporado aos Algoritmos Genéticos. Os resultados obtidos confirmam que os Algoritmos Genéticos propostos, associados com o Método de Minimização de Energia e a Mutação por Vizinhança, são capazes de resolver o problema de programação da produção, otimizando os objetivos operacionais da refinaria. / [en] The purpose of this dissertation is to develop a method, based on Genetics Algorithms and Rule Base Systems, to optimize the production scheduling of fuel oil and asphalt area in a petroleum refinery. The refinery is a multi- product plant, with two machine stages - one mixer and a set of tanks - with no setup time and with resource constrains in continuous operation. Two genetic algorithms models were developed to establish the sequence and the lot- size of all production shares. The first model proposed has a direct representation of the production scheduling which the time interval of scheduling is shared in one hour discrete intervals. The second model proposed has a indirect representation that need to be decoded in order to make the real production scheduling. The Rule Base Systems were developed to choice the tanks that receive the production and the tanks that provide the demand of the several consumer centers. A special mutation operator - Neighborhood Mutation - was proposed to minimize the number of changes in the production. A Multi-objective Fitness Evaluation technique, based on a Energy Minimization Method, was also incorporated to the Genetic Algorithm models. The results obtained confirm that the proposed Genetic Algorithm models, associated with the Multi- objective Energy Minimization Method and the Neighborhood Mutation, are able to solve the scheduling problem, optimizing the refinery operational objectives. / [es] El objetivo de esta disertación es desarrollar un método de solución utilizando Algoritmos Genéticos (GAs) aliado a un Sistema Basado en Reglas para encontrar y optimizar las soluciones generadas para el problema de programación de la producción de Aceites Combustibles y Asfalto en la REVAP (Refinería del Valle de Paraíba). La refinería es una planta multiproducto, con dos estados de máquinas en serie - un mezclador y un conjunto de tanques, con restricción de recursos y operando en régimen contínuo. En este trabajo se desarrollaron dos modelos basados en algoritmos genéticos que son utilizados para encontrar la secuencia y los tamaños de los lotes de producción de los productos finales. El primer modelo propuesto utiliza una representación directa de la programación de la producción en la cuál el horizonte de programación se divide en intervalos discretos de un hora. El segundo modelo, utiliza una representación indirecta que es decodificada para formar la programación de la producción. EL Sistema Basado en Reglas se utiliza en la selección de los tanques que reciben la producción y los tanques que atienden a la demanda de los diversos centros consumidores. Un nuevo operador de mutación - Mutación por Vecindad - fue propuesto para minimizar el número de cambios operacionales en la producción. le fue incorporado a los Algoritmos Genéticos una técnica para la agregación de múltiples objetivos, basado en el Método de Minimización de Energía. Los resultados obtenidos confirman que los Algoritmos Genéticos propuestos, asociados al Método de Minimización de Energía y la Mutación por Vecindad, son capazes de resolver el problema de programación de la producción, optimizando los objetivos operacionales de la refinería.
30

[en] SIMULATION AND DESIGN OF GAAS/ALGAAS QUANTUM WELL SOLAR CELLS AIDED BY GENETIC ALGORITHM / [pt] SIMULAÇÃO E PROJETO DE CÉLULAS SOLARES COM POÇOS QUÂNTICOS DE GAAS/ALGAAS AUXILIADO POR ALGORITMOS GENÉTICOS

ANDERSON PIRES SINGULANI 03 March 2010 (has links)
[pt] A energia é assunto estratégico para a grande maioria dos países e indústrias no mundo. O consumo atual energético é de 138,32 TWh por ano e é previsto um aumento de 44% até o ano de 2030 o que demonstra um mercado em expansão. Porém, a sociedade atual exige soluções energéticas que causem o menor impacto ambiental possível, colocando em dúvida o uso das fontes de energia utilizadas atualmente. O uso da energia solar é uma alternativa para auxiliar no atendimento da futura demanda de energia. O seu principal entrave é o custo de produção de energia ser superior as fontes de energia atuais, principalmente o petróleo. Contudo nos últimos 10 anos foi verificado um crescimento exponencial na quantidade de módulos fotovoltaicos instalados em todo mundo. Nesse trabalho é realizado um estudo sobre célula solares com poços quânticos. O uso de poços quânticos já foi apontado como ferramenta para aumentar a eficiência de células fotovoltaicas. O objetivo é descrever uma metodologia baseada em algoritmos genéticos para projeto e análise desse tipo de dispositivo e estabelecer diretivas para se construir uma célula otimizada utilizando esta tecnologia. Os resultados obtidos estão de acordo com dados experimentais, demonstram a capacidade dos poços quânticos em aumentar a eficiência de uma célula e fornecem uma ferramenta tecnológica que espera-se contribuir para o desenvolvimento do país no setor energético. / [en] The energy is a strategical issue for the great majority of the countries and industries in the world. The current world energy consumption is of 138,32 TWh per year and is foreseen an increase of 44% until the year of 2030 which demonstrates a market in expansion. However, the society demands energy solutions that cause as least ambient impact as possible, putting in doubt the use of the current technologies of power plants. The utilization of solar energy is an alternative to assist in the attendance of the future demand of energy. Its main impediment is the superior cost of energy production in comparison with the current power plants, mainly the oil based ones. However in last the 10 years an exponential growth in the amount of installed photovoltaics modules worldwide was verified. In this work a study on solar cell with quantum wells is carried through. The use of quantum wells already was pointed as tool to increase the efficiency of photovoltaics cells. The objective is to describe a methodology based on genetic algorithms for project and analysis of this type of device and to establish directive to construct an optimized cell using this technology. The results are in accordance with experimental data, that demonstrates the capacity of the quantum wells in increasing the efficiency of a cell and supply a technological tool that expects to contribute for the development of the country in the energy sector.

Page generated in 0.0338 seconds