1 |
[en] MANY BODY EFFECTS AND TRANSPORT PROPERTIES IN NANOSCOPIC SYSTEMS. THE KONDO EFFECT AND MAGNETISM IN QUANTUM DOT STRUCTURES / [pt] EFEITOS DE MUITOS CORPOS NAS PROPRIEDADES DE TRANSPORTE EM SISTEMAS NANOSCÓPICOS. EFEITO KONDO E MAGNETISMO EM ESTRUTURAS DE PONTOS QUÂNTICOSLAERCIO COSTA RIBEIRO 31 August 2010 (has links)
[pt] Nesta tese estudamos as propriedades de transporte de estruturas de pontos quânticos (PQs) ligados a contatos metálicos (CM). Descrevemos o formalismo dos bósons escravos através de sua aplicação ao sistema de um PQ ligado a um CM. Estudamos a nuvem Kondo (NK) dentro deste CM e desenvolvemos uma metodologia para calcular sua extensão (csi). Mostramos que (csi) é inversamente proporcional a temperatura Kondo TK. Aplicamos o método ao sistema de dois PQs. Estudamos o Regime Kondo (RK) molecular de um elétron (1e), a concorrência entre o antiferromagnetismo e o RK de dois elétrons (2e), a constituição da NK dentro dos CM e o valor de Tk. Calculamos a extensão da NK e a TK para diferentes valores da conexão entre os PQs e comparamos com os resultados obtidos a temperatura finita (TF). Mostramos a diminuição da NK quando TK e a conexão entre os PQs aumentam. Obtivemos um comportamento exponencial para TK em função desta conexão. Estudamos o sistema de dois PQs interagentes que se enxergam através de um terceiro PQ não interagente. Obtivemos a coexistência entre o RK e a correlação ferro (CF) para o sistema com 2e. À TF obtivemos um comportamento parabólico para a TK em função da conexão com o sítio do meio. Estes resultados diferem dos obtidos para o sistema
de dois PQs conectados diretamente entre si. Estudamos uma molécula de três PQs interagentes conectados a dois CM através do PQ do meio e identificamos o estabelecimento de um regime Kondo dois estágios. Observamos uma CF quando o PQ do meio está ocupado e uma correlação antiferro CAF quando está vazio. Esta propriedade permite o funcionamento deste sistema como uma porta quântica. Mostramos que a leitura da informação desta porta pode ser mediada pelo RK. / [en] In this thesis we study the transport properties of quantum dot structures (QD s) connected to metallic leads (ML).We describe the slave boson mean field approach through it s application to a system of one QD connected to a (ML). We study the Kondo cloud (KC) inside this ML and develop a method to calculate it s extension (csi). We prove that ξ is proportional to the inverse of Kondo temperature TK. We apply the method to the system of two QD s and study the molecular KR for the system with one electron (1e), the competition between the antiferromagnetism and the KR for the system with an occupations of two electrons (2e), the formation of the Kondo cloud inside the ML and the TK value. We calculate the
extension (csi) and TK for diferent values of the connection between the QD s and compare with the results found to finite temperature (FT).We show the decrease of the KC when TK and the connection between the dots increases. We obtain an exponential behavior of TK as a function of this connection.
We study the system of two QD s with Coulomb interaction U correlated though a non interacting QD. We obtain the coexistence between the KR and the ferromagnetic correlation (FC) for the system with 2e. In a regime of finete temperature we obtain a parabolic behavior to the TK as a function of the connection with the central QD. This results are different of that obtained for the system of two QD s directly connected to each other. We study the molecule of three interacting QD s connected to two ML through
the central one and identify a two stage Kondo effect. We observe a FC when the central QD is charged with one electron and an anti-ferromagnetic correlation (AFC) when this PQ is empty(or occupied if an even number of electrons). This properties permits the operation of this system as a quantum gate device. We prove that the reading of the information of this gate can be mediated through the KR.
|
2 |
[en] TENSOR PRODUCT UNIVERSALITY AND COECKENULLS COMPOSITIONALITY THEOREM / [pt] A UNIVERSALIDADE DO PRODUTO TENSORIAL E O TEOREMA DE COMPOSICIONALIDADE DE COECKEDEBORA FREIRE MONDAINI 13 July 2006 (has links)
[pt] O propósito deste trabalho é apresentar uma demonstração
simplificada do Teorema da Composicionalidade de Coecke,
o
qual diz respeito ao processamento de informação
quântica
agregada a estados emaranhados hpartidos. Utilizando a
propriedade da universalidade do produto tensorial em
nossa prova, veremos que é possível considerar todos os
estados relevantes como sendo estados-produto, o que
torna
a demonstração bem mais fácil. Apresentaremos ainda o
processo de teleportação de estados quânticos, tão
comentado nos dias de hoje, e verificaremos finalmente
que
tal processo é uma aplicação trivial do teorema de
Coecke. / [en] The purpose of this work is to present a simplified
demonstration of Co-
ecke's Compositionality Theorem, which refers to the
quantum information
processing associated to n-partite entangled states. By
using the universal
property of the tensor product in our proof, we will see
that is possible
to consider all the relevant states as being product
states, which turns the
demonstration much easier. We will present also the
teleportation process
of quantum states, so called nowadays, and verify finally
that such a process
is a trivial application of Coecke's theorem
|
3 |
[pt] COLOCANDO INTERAÇÕES OPTOMECÂNICAS EM USO: DO APRISIONAMENTO DE ORGANISMOS AO EMARANHAMENTO DE NANOESFERAS / [en] HARNESSING OPTOMECHANICAL INTERACTIONS: FROM TRAPPING ORGANISMS TO ENTANGLING NANOSPHERESIGOR BRANDAO CAVALCANTI MOREIRA 28 June 2021 (has links)
[pt] Nas últimas décadas, interações entre luz e matéria provaram ser uma
ferramenta versátil para medir e controlar sistemas mecânicos, encontrando
aplicações desde detecção de forças até resfriamento ao estado fundamental
de nanoesferas. Nesta dissertação, nós apresentamos algumas das ferramentas
teóricas necessárias para descrever interferômetros, pinças ópticas e cavidades
ópticas, constituintes fundamentais da caixa de ferramentas optomecânica.
No regime clássico, estudamos o campo eletromagnético circulante em
interferômetros lineares e mostramos como encontrar o campo resultante
transmitido, apresentando exemplos de cavidades ópticas com um número
arbitrário de elementos dispersivos. Nós também estudamos as forças de
pressão de radiação que feixes ópticos podem imprimir em partículas dielétricas
e mostramos como o aprisionamento óptico 3D é possível em focos claros e
escuros. A potencial aplicação para captura de organismos vivos é estudada.
No regime quântico, nós estudamos como o campo ressonante de cavidades
ópticas pode interagir de forma dispersiva com diferentes sistemas
mecânicos, dando origem a uma dinâmica quântica fechada emaranhante. Ao
considerar uma nuvem ultra resfriada de átomos interagindo com dois modos
ópticos, mostramos o surgimento de emaranhamento óptico que evidencia a
natureza não-clássica do conjunto atômico macroscópico. A viabilidade experimental
deste experimento com tecnologia atual é estudada.
Além disso, nós investigamos o cenário em que uma pinça óptica posiciona
uma partícula levitada dentro de uma cavidade óptica de forma que os fótons
da pinça espalhados pela partícula possam sobreviver dentro da cavidade. Já
foi demonstrado que esta interação, chamada de espalhamento coerente, pode
resfriar nanopartículas até números de fônons menores do que um, atingindo
profundamente o regime quântico. Nós mostramos que esta interação também
pode gerar emaranhamento mecânico entre muitas partículas levitadas, mesmo
em um ambiente a temperatura de 300K. Um resumo sobre sistemas de
variáveis contínuas e a caixa de ferramentas numérica customizada usada ao
longo deste trabalho são apresentados. / [en] Over the last decades, light-matter interactions have proven to be a
versatile tool to measure and control mechanical systems, finding application
from force sensing to ground state cooling of nanospheres. In this dissertation,
we present some of the theoretical tools that describe interferometers, optical
tweezers and optical cavities, fundamental constituents of the optomechanical
toolbox. In the classical regime, we study the circulating electromagnetic field
within linear interferometers and show how one can find the resulting transmitted
field, presenting examples of optical cavities with an arbitrary number
of dispersive elements. Moreover, we also study the radiation-pressure forces
that optical beams can imprint on dielectric particles and show how 3D optical
trapping is possible in both bright and dark focuses. Potential application to
trapping of living organisms is studied. In the quantum regime, we study how the resonant field of optical cavities can dispersivelly interact with different mechanical systems, giving rise to an
entangling closed quantum dynamics. When considering an ultracold cloud of
atoms interacting with two optical modes, we show the emergence of optical
entanglement which evidences the nonclassical nature of the macroscopic
atomic ensemble. The experimental feasibility of this experiment with current
technology is studied. Furthermore, we investigate the scenario where a finely tuned optical
tweezer places a trapped particle inside an optical cavity such that the tweezer s
scattered photons can survive inside the cavity. This so-called coherent scattering
interaction has been shown to cool nanoparticles to phonon numbers
lower than one deep into the quantum regime. We show that it also can generate
mechanical entanglement between many levitated particles even in a room
temperature environment. An overview on continuous variable systems and
the custom numerical toolbox used throughout this work are presented.
|
Page generated in 0.0308 seconds