• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] DEMAND FORECASTING IN THE LOGISTICS MANAGEMENT OF PERISHABLE PRODUCTS SOLD BY VENDING MACHINES / [pt] PREVISÃO DE DEMANDA NA GESTÃO LOGÍSTICA DE UM PRODUTO PERECÍVEL VENDIDO POR MÁQUINA AUTOMÁTICA

PAULA ANDRADE JUDICE 29 July 2005 (has links)
[pt] Esta dissertação analisa o problema da gestão de estoque de sanduíches de uma empresa prestadora de serviços de alimentação, a Tok Take Alimentação Ltda. Para tanto, foi feito um levantamento bibliográfico na área de gestão de estoques e de previsão de demanda. Para o estudo de caso, dados históricos do consumo diário de sanduíches em um determinado cliente foram coletados e submetidos à análise por meio de dois métodos de previsão de demanda: o método de médias móveis dupla e o método de amortecimento direto para dados sazonais. Desta forma, foram determinados dois modelos que possibilitam a previsão de demanda diária deste produto. / [en] This report analyzes the issue of managing the inventory of sandwiches of a food vending enterprise, Tok Take Alimentação Ltda. For that purpose, a bibliographic survey was made on inventory management and demand forecasting. In the case studied it was found that no gain could be obtained by expanding the replenishment period. Hence the analysis turned its focus to demand forcasting. For the case study, historical data of sandwich consumption at a specific client site were colected and submited to analysis by means of two forecasting methods namely: double moving average and direct smoothing for seasonal data. After that, a model that enables daily forecasting of that product`s demand was determined.

Page generated in 0.0467 seconds