1 |
[pt] ANÁLISE DE SENSIBILIDADE E OTIMIZAÇÃO DE FORMA DE ESTRUTURAS GEOMETRICAMENTE NÃO-LINEARES / [es] ANÁLISIS DE SENSIBILIDAD Y OPTIMIZACIÓN DE FORMA DE EXTRUCTURAS GEOMÉTRICAMENTE NO-LINEALES / [en] SENSITIVITY ANALYSIS AND SHAPE OPTIMIZATION OF GEOMETRICALLY NON-LINEAR STRUCTURESEVANDRO PARENTE JUNIOR 05 October 2001 (has links)
[pt] Este trabalho propõe uma metodologia para a otimização de
forma de estruturas geometricamente não-lineares. O
objetivo desta metodologia é evitar os problemas de
instabilidade apresentados por estruturas otimizadas de
acordo
com a formulação clássica. Ela foi implementada para
problemas bidimensionais e os resultados obtidos na
otimização de diferentes estruturas demonstraram o seu
sucesso.
Utilizando-se conceitos de modelagem geométrica, a forma
da
estrutura é defini-da através das curvas de seu contorno.
Assim, a representação paramétrica de curvas e a
definição destas em função de um conjunto de pontos de
interpolação (pontos-chave) são discutidas
detalhadamente.
A ênfase é dada à interpolação através de B-splines,devido
a sua grande flexibilidade. O problema de otimização é
definido com base no modelo geométrico e as variáveis de
projeto são as coordenadas dos pontos-chave. A simetria
da
estrutura é garantida através da ligação de variáveis.
A estrutura é analisada através de elementos
isoparametricos planos. Assim, antes de realizar a
análise,
é necessário discretizar a estrutura em um conjunto de
elementos finitos.
Para realizar esta tarefa foram implementados diferentes
algoritmos de geração de malhas, tanto estruturadas
quanto
não-estruturadas. O método de Newton-Raphson é utilizado
pa-
ra determinar a configuração de equilíbrio e
diferentes
métodos podem ser aplicados para determinar os pontos
críticos. Devido aos problemas de convergência
apresentados
pelos métodos diretos para a determinação dos pontos
crticos, um método semi-direto foi desenvolvido
neste trabalho. Os resultados obtidos na análise de
diferentes exemplos mostraram a adequação dos elementos
finitos e dos métodos numéricos implementados.
Os algoritmos de programação matemática utilizados neste
trabalho precisam dos gradientes da função objetivo e das
restrições, que são calculadas com base nos gradientes
das respostas da estrutura. Partindo-se de equações
gerais
válidas para quaisquer elementos,foram desenvolvidas
expressões analíticas que permitem o cálculo exato das
sensibilidades de elementos finitos isoparamétricos
formulados através do procedimento Lagrangiano Total.
O desenvolvimento e a implementação de expressões
semelhantes para elementos mais complexos é uma tarefa
bastante árdua. Por outro lado, o método das diferenças
fi-
nitas é simples e genérico, mas muito caro
computacionalmente. O método semi-analítico mantémm as
vantagens da utilização de diferenças finitas e possui um
custo computacional baixo, porém pode apresentar sérios
problemas de preciso. Devido a estes motivos, foi
desenvolvido neste trabalho um procedimento para melhorar
a
qualidade das sensibilidades semi-analíticas de
estruturas
geometricamente não-lineares. O procedimento é baseado na
diferenciação exata dos movimentos de corpo rígido do
elemento utilizado. Os resultados numéricos obtidos
demonstraram a sua eficácia. / [en] This work presents a methodology for shape optimization of
geometrically nonlinear structures. The main purpose is to
avoid the stability problems generated by optimization
based on linear behavior. The methodology was implemented
for two-dimensional problems, and several structures were
successfully optimized. Using geometrical modeling
concepts, the shape of the structure is defined by its
boundary curves. Therefore, parametric representation and
curve definition by a set of key points are discussed in
detail. Due to its flexibility in shape definition,
particular attention is given to interpolation using B-
splines. The optimization problem is defined based on the
geometrical model and the design variables are the
positions of key points. Design variable linking can be
applied to enforce symmetry.The structure it is analyzed
using plane isoparametric elements. Thus, is necessary
to perform the discretization of the structure in a set of
finite elements. Different algorithms were implemented to
generate structured or unstructured finite element meshes.
The standard Newton-Raphson method is applied to find the
equilibrium configuration, and different methods can be
used to evaluate critical points. Due to the convergence
problems presented by direct methods, a new semi-direct
method was developed. The numerical results show the
suitability of the finite elements and numerical methods
implemented in the present work.The mathematical
programming algorithms used in this work require the
evaluation of design sensitivities in order to compute the
search direction of the optimization process.Using basic
sensitivity equations, which are independent from the
particular element, analytical expressions were developed
for the sensitivity computation of isoparametric elements
formulated according to the Total Lagrangian approach.
Applying the analytical method for more complex elements is
very cumbersome and error prone. On the other hand, the
finite difference method is simple and generic, but its
computational cost is prohibitive. The semi-analytical
method preserves the advantages of the use of finite
differences and has a low computational cost, but presents
severe accuracy problems. Hence, a method based on the
exact differentiation of the rigid body motions was
developed in this work to improve the accuracy of the semi-
analytical sensitivities of geometrically nonlinear
structures. The numerical examples show that this method
eliminates the abnormal errors presented by the semi-
analytical sensitivities. / [es] Este trabajo propone una metodología para la optimización
de forma de extructuras geométricamente no lineares. EL
objetivo de esta metodología es evitar los problemas de
inestabilidad que presentan las extructuras optimizadas de
acuerdo con la formulación clásica. Ella fue implementada
para problemas bidimensionales y los resultados obtenidos
en la optimización de diferentes extructuras demuestran su
éxito. Utilizando conceptos de modelaje geométrica, la
forma de la extructura se define a través de las curvas de
contorno. Así, la representación paramétrica de curvas y su
definición en función de un conjunto de puntos de
interpolación (puntos clave) son discutidas detalladamente.
Se le da especial a la interpolación a través de B
splines,debido a su gran flexibilidad. El problema de
optimización se define con base en el modelo geométrico y
las variables de proyecto son las coordenadas de los puntos
clave. La simetría de la extructura se garante a través de
la llamada de variables. La extructura se analiza a través
de elementos isoparamétricos planos. Antes de realizar el
análisis, es necesario discretizar la extructura en un
conjunto de elementos finitos. Para realizar esta tarea
fueron implementados diferentes algoritmos de generación de
mallas, tanto extructuradas como no extructuradas. EL
método de Newton Raphson es utilizado para determinar la
configuración de equilibrio y pueden ser aplicados
diferentes métodos para determinar los puntos críticos.
Debido a los problemas de convergencia presentados por los
métodos directos para la determinación de los puntos
crticos, se desarrolló un método semidirecto. Los
resultados obtenidos en el análisis de diferentes ejemplos
muestran la adque los elementos finitos los métodos
numéricos implementados son adequados Los algoritmos de
programación matemática utilizados en este trabajo
necesitan los gradientes de la función objetivo y de las
restricciones, que son calculadas con base en los
gradientes de las respuestas de la extructura. Partiendo de
las ecuaciones generales válidas para cualesquiera
elementos, fueron desarrolladas expresiones analíticas que
permiten el cálculo exacto de las sensibilidades de
elementos finitos isoparamétricos formulados a través del
procedimiento Lagrangiano Total. EL desarrollo y la
implementación de expresiones semejantes para elementos más
complexos es una tarea bastante árdua. Por otro lado, el
método de las diferencias finitas es simple y genérico,
pero muy caro computacionalmente. EL método semianalítico
mantiene las ventajas de la utilización de diferencias
finitas y posee un costo computacional bajo, pero puede
presentar serios problemas de precisión. Es por ello que se
desarrolló en este trabajo un procedimiento para mejorar la
calidad de las sensibilidades semianalíticas de extructuras
geométricamente no lineares. EL procedimiento tiene como
base la diferenciación exacta de los movimentos de cuerpo
rígido del elemento utilizado. Los resultados numéricos
obtenidos demuestran su eficacia.
|
2 |
[en] GRAPHICS INTERACTIVE TOOL FOR THE DESIGN OF REINFORCED CONCRETE PLANE FRAMES CONSIDERING GEOMETRIC NONLINEARITY / [pt] FERRAMENTA GRÁFICO-INTERATIVA PARA O DIMENSIONAMENTO DE PÓRTICOS PLANOS DE CONCRETO ARMADO CONSIDERANDO NÃO LINEARIDADE GEOMÉTRICAMARIA FLAVIA DUTRA SILVA SILVA 30 August 2017 (has links)
[pt] O objetivo deste trabalho é complementar a ferramenta de dimensionamento de pórticos planos de concreto armado já existente no Ftool, programa educacional amplamente difundido no meio acadêmico. Para tanto, foi introduzido o cálculo e dimensionamento de pilares de concreto armado à flexão composta reta. Foi adicionada uma nova seção transversal, referente aos pilares retangulares com armaduras simétricas. Além disso, foi necessária a inclusão de um método de análise não linear geométrica simplificado que fosse compatível com a filosofia do Ftool, aliando simplicidade e eficiência: o método dos Dois Ciclos Iterativos. A ferramenta para análise não linear geométrica pode ou não ser utilizada em
conjunto com a ferramenta para o dimensionamento de estruturas de concreto armado, sendo possível a análise não linear geométrica de pórticos planos constituídos de outros materiais. A metodologia utilizada para o dimensionamento dos pilares em concreto armado é a que se baseia nas zonas de solicitação e foi
adequada para estar de acordo com a norma brasileira vigente, a ABNT NBR 6118:2014, assim como o dimensionamento de vigas existente em uma versão anterior dessa ferramenta. Dessa forma, é possível exibir resultados para pórticos planos compostos por vigas e pilares em concreto armado, nos mesmos moldes da versão anterior, com diagramas para as armaduras longitudinal e transversal disponíveis nos modos necessária e adotada. / [en] The main objective of this work is to complement the reinforced concrete plane frames design tool already existing in Ftool, an educational tool widely known in academia. Therefore, the design of reinforced concrete columns was introduced. A new cross section for rectangular columns with symmetrical steel
reinforcement was added. In addition to that, the inclusion of a simplified nonlinear geometric analysis that was in accordance to the philosophy of Ftool, combining simplicity and efficiency, was needed: the Two cycles iterative method. The nonlinear geometric analysis tool may or may not be used together with the reinforced concrete plane frames design tool, thus allowing for geometric nonlinear analyses of plane frames of other materials. The methodology used for the reinforced concrete frames design was based on solicitation zones and was adapted to be in accordance with the Brazilian code, the ABNT NBR
6118:2014, as was the existing reinforced concrete beams design tool. It is now possible to show results for plane frames composed of reinforced concrete columns and beams just as in the previous version of the reinforced concrete design tool, showing diagrams for the necessary and adopted longitudinal and transversal steel reinforcement.
|
3 |
[pt] OTIMIZAÇÃO TOPOLÓGICA DE ESTRUTURAS HIPERELÁSTICAS BASEADA EM MÉTODOS DE INTERPOLAÇÃO / [en] TOPOLOGY OPTIMIZATION OF HYPERELASTIC STRUCTURES BASED ON INTERPOLATION METHODSVINICIUS OLIVEIRA FONTES 21 May 2021 (has links)
[pt] O design otimizado de estruturas considerando não-linearidades tem sido amplamente pesquisado nas décadas recentes. A análise de elementos finitos aplicada à otimização topológica é prejudicada pela deformação excessiva de elementos de baixa densidade sob alta compressão, o que impede o processo
de encontrar uma solução ótima. Dois métodos, o esquema Interpolação de Energia e a técnica de Hiperelasticidade Aditiva, são implementados para superar essa dificuldade no problema de minimização da flexibilidade, e modelos de materiais hiperelásticos são usados para investigar suas influências na topologia otimizada. O Método das Assíntotas Móveis é usado para atualizar as variáves de projeto cujas sensibilidades foram calculadas pelo método adjunto. A equação de estado é resolvida através do método de Newton-Raphson com um incremento de carga ajustável para reduzir o custo computacional. Resultados de dois problemas de referência são comparado com aqueles já estabelecidos na literatura. O uso de diferentes modelos hiperelásticos apresentou pouca influência no design final da estrutura.
O método de Interpolação de Energia foi capaz de convergir para cargas muito maiores que o método padrão, enquanto a Hiperelasticidade Aditiva apresentou dificuldades de convergência em estado plano de deformação. / [en] The optimized design of structures considering nonlinearities has been widely researched in the recent decades. The finite element analysis applied to topology optimization is jeopardized by the excessive deformation of low-density elements under high compression, which hinders the process of finding an optimal solution. Two methods, the Energy Interpolation scheme and the Additive Hyperelasticity technique, are implemented to overcome this difficulty in the minimum compliance problem, and hyperelastic material models are used to investigate their influence on the optimized topology. The Method of Moving Asymptotes is used to update the design variables whose sensitivities were calculated from the adjoint method. The state equation is solved through the Newton-Raphson method with an adjusting load step to reduce computational cost. Results for two benchmark problems are compared with those already established in the literature. The use of different hyperelastic models presented little influence on the
final design of the structure. The Energy Interpolation method was able to converge for much higher loads than the default method, while the Additive Hyperelasticity presented convergence difficulties in plane strain.
|
4 |
[en] STATIC AND DYNAMIC INSTABILITY OF PLANE FRAMES WITH SEMI-RIGID CONNECTIONS / [pt] INSTABILIDADE ESTÁTICA E DINÂMICA DE PÓRTICOS PLANOS COM LIGAÇÕES SEMI-RÍGIDASALEXANDRE DA SILVA GALVAO 20 December 2004 (has links)
[pt] O principal objetivo deste trabalho é o desenvolvimento de
um programa computacional para a analise não-linear
estática e dinâmica de pórticos planos com ligações
flexíveis (semi-rígidas). Inicialmente é apresentada a
metodologia de solução não-linear e as formulações dos
elementos finitos adotados na base computacional
implementada. Em seguida, são estudados vários exemplos de
sistemas estruturais estáticos com caminhos de equilíbrio
fortemente não-lineares com a finalidade de testar os
programas implementados. Então é apresentada a formulação
do problema dinâmico com a definição das equações
diferenciais ordinárias de movimento e as expressões das
matrizes de massa e amortecimento. A solução desse sistema
de equações diferenciais ordinárias é obtida por métodos
de integração numérica implícitos ou explícitos. Alguns
destes métodos são apresentados neste trabalho e
incorporados ao programa computacional em conjunto com
estratégias adaptativas de incremento automático do
intervalo de tempo de integração (delta)t. Por fim, o
sistema computacional desenvolvido é utilizado na modelagem
e obtenção da resposta estrutural estática e dinâmica de
alguns sistemas estruturais planos com comportamento
eminentemente não-linear. Através destes resultados são
analisados alguns fenômenos importantes de instabilidade
estática e dinâmica, bem como possíveis mecanismos de
colapso e a influência de parâmetros físicos e geométricos
no comportamento estrutural. / [en] The main objective of this thesis is to develop a numerical
methodology for the nonlinear static and dynamics analysis
of plane frames with semi-rigid connections. Initially, the
formulations of the adopted finite elements are presented
and implemented together with numerical methodologies for
the solution of the non-linear equilibrium equations. Then,
some examples of strongly nonlinear structural systems
under static loads are studied to check the methodology.
Subsequently, the ordinary differential equations of motion
are derived and the corresponding damping and mass matrices
are presented. The solution of this system of ordinary
differential equations is obtained by implicit or explicit
numerical integration methods. Some of these methods are
presented in this work and incorporated into the
computational program together with adaptive strategies for
the automatic increment of the time step (delta)t. Finally,
the computational system here developed is used to study
the static and dynamic response of some plain structural
systems with an inherent nonlinear behavior. A detailed
parametric study is carried out to identify the influence
of physical and geometric parameters on the structural
behavior. This enables the analysis of some important
static and dynamic instability phenomena and identification
of possible mechanisms of collapse.
|
5 |
[en] EDUCATIONAL TOOL FOR STRUCTURAL ANALYSIS OF PLANE FRAME MODELS WITH GEOMETRIC NONLINEARITY / [pt] FERRAMENTA EDUCACIONAL PARA ANÁLISE ESTRUTURAL DE MODELOS DE PÓRTICOS PLANOSRAFAEL LOPEZ RANGEL 06 May 2020 (has links)
[pt] A análise não linear de estruturas é uma tarefa de grande importância na execução de projetos eficientes e seguros, permitindo a economia de recursos materiais, ao tempo que se identifica efeitos de segunda ordem no comportamento do modelo que podem vir a ter consequências significativas. Esse tipo de análise é realizado através de algoritmos numéricos iterativos, e a visualização de resultados gráficos é essencial para auxiliar a interpretação do analista. Por isso, a análise não linear só se tornou recorrente com o advento de aplicações computacionais gráfico-iterativas. Porém, diferentemente de uma análise linear-elástica, em que os resultados fornecidos pelo programa pouco dependem do conhecimento do usuário sobre os métodos de solução, a análise não linear requer uma série de parâmetros de entrada relacionados aos métodos numéricos e, portanto, exige um conhecimento básico por parte do usuário sobre os algoritmos de solução e comportamento do modelo. Tendo isso em vista, este trabalho busca desenvolver uma ferramenta computacional de fácil uso e com uma interface gráfica simples, porém com um solver robusto, para auxiliar a aprendizagem da análise geometricamente não linear de modelos aporticados bidimensionais. Para isso o programa de análise estrutural Ftool, consagrado na comunidade de Engenharia Civil e no meio acadêmico, foi adotado para receber os novos recursos para executar a análise com não linearidade geométrica. Na nova versão do Ftool, os usuários têm a oportunidade de utilizar e testar diversas técnicas de solução do sistema não linear de equilíbrio do modelo, descritas nesse trabalho. A forma como a análise é executada permite um controle total do usuário sobre o progresso da análise. Além disso, resultados em forma de gráficos podem ser estudados no novo ambiente de plotagem do programa. / [en] Nonlinear analysis of structures is an important task for efficient and safe projects, allowing the saving of material resources and the identification of second-order effects on the behavior of structural models that may have significant consequences. This type of analysis is performed with iterative numerical algorithms, and visualization of graphic results is essential to auxiliary the interpretation of the analyst. For this reason, nonlinear analyses only became common with the advent of graphical-interactive computational applications. However, unlike a linear-elastic analysis, where the results provided by the program depend very little on the users knowledge about the solution methods, a nonlinear analysis requires a series of input parameters related to the numerical methods and thus demands a basic understanding about the solution algorithms and nonlinear structural behavior. With this in mind, this work aims to develop a user-friendly computational tool with a simple graphical interface, but with a robust solver, to assist the learning of geometrically nonlinear analysis of two-dimensional frame models. The structural analysis software Ftool, largely used by the Civil Engineering community and academia, was adopted to receive the new features to perform geometrically nonlinear analyses. In the new version of the Ftool program, students, engineers and researchers have the opportunity to use and test various solution techniques of the nonlinear system of equilibrium equations, which are described in detail throughout this work. The way the nonlinear analysis is performed allows for a full control by users over the progress of the analysis. In addition, graph results can be studied in the new plotting environment of the program.
|
6 |
[pt] OTIMIZAÇÃO TOPOLÓGICA DE ESTRUTURAS GEOMETRICAMENTE NÃOLINEARES BASEADA EM UM ESQUEMA DE INTERPOLAÇÃO DE ENERGIA / [en] TOPOLOGY OPTIMIZATION OF GEOMETRICALLY NONLINEAR STRUCTURES BASED ON AN ENERGY INTERPOLATION SCHEMEANDRE XAVIER LEITAO 26 May 2020 (has links)
[pt] Em muitos problemas de engenharia, e.g., no projeto de próteses biomédicas flexíveis ou em dispositivos de absorção de energia, estruturas sofrem grandes deslocamentos. Nestes casos, a não linearidade geométrica deve ser levada em conta na resposta estrutural. Contudo, algoritmos de otimização topológica considerando não linearidades, e modelados segundo o método de elementos finitos, sofrem instabilidades numéricas causadas por distorções excessivas nas regiões de baixa densidade dentro do domínio de
projeto. Em particular, a matriz de rigidez pode não ser positiva definida comprometendo a convergência do processo de otimização. Esta dissertação visa estudar um esquema de interpolação entre as formulações lineares e não lineares de elementos finitos para aliviar tais distorções. Em cada etapa da otimização, para determinar a configuração de equilíbrio, o sistema de equações não-lineares é resolvido pelo procedimento de Newton-Raphson. Utilizando-se das informações dos gradientes calculadas através do método
adjunto, o Método das Assíntotas Móveis é empregado para atualizar as variáveis de projeto. Por meio de problemas de referência considerando grandes deslocamentos, são demonstradas a eficácia e a eficiência deste esquema de interpolação. Mais especificamente, as topologias otimizadas estão de acordo com aquelas obtidas na literatura e exibem a dependência esperada em relação ao nível de carga. O esquema de interpolação em estudo desempenha papel crucial na solução de problemas não lineares em níveis
elevados de carga, permitindo que a rotina de otimização convirja e se obtenha a distribuição de material ótima. / [en] In many engineering problems, e.g., design of flexible biomedical prostheses or energy absorption devices, structures undergo large displacements. In those problems, the structural response must take into account
the geometric nonlinearity. However, topology optimization algorithms regarding nonlinearities, and based on the finite element method, typically suffer from numerical instabilities caused by excessive distortions of
low-density regions within the design domain. In particular, the stiffness matrix may be no longer positive definite, which can jeopardize the convergence of the optimization process. This thesis aims to study
an interpolation scheme between linear and nonlinear finite element formultation to alleviate this convergence issue. At each step of the optimization, the nonlinear state equation is solved by the Newton-Raphson procedure to determine the equilibrium configuration. Making use of the gradient information computed from the adjoint method, the Method of Moving Asymptotes is employed to update the design variables. Through several benchmark problems considering large displacements, it is demonstrated the effectiveness and efficiency of this interpolation scheme. More specifically, the optimized designs are in agreement with those obtained in the literature and exhibit correct load-level dependence. The investigated interpolation scheme plays a crucial role in the solution of nonlinear problems with high load levels, allowing the optimization routine to converge and to obtain the optimal material arrangement.
|
Page generated in 0.0337 seconds