51 |
[en] TRAFFIC CONTROL THROUGH FUZZY LOGIC AND NEURAL NETWORKS / [pt] CONTROLE DE SEMÁFOROS POR LÓGICA FUZZY E REDES NEURAISALEXANDRE ROBERTO RENTERIA 17 June 2002 (has links)
[pt] Este trabalho apresenta a utilização de lógica fuzzy e de
redes neurais no desenvolvimento de um controlador de
semáforos - o FUNNCON. O trabalho realizado consiste em
quatro etapas principais: estudo dos fundamentos de
engenharia de tráfego; definição de uma metodologia para a
avaliação de cruzamentos sinalizados; definição do
modelo do controlador proposto; e implementação com dados
reais em um estudo de caso.O estudo sobre os fundamentos de
engenharia de tráfego aborda a definição de termos,os
parâmetros utilizados na descrição dos fluxos de tráfego,
os tipos de cruzamentos e seus semáforos, os sistemas de
controle de tráfego mais utilizados e as diversas medidas de
desempenho.Para se efetuar a análise dos resultados do
FUNNCON, é definida uma metodologia para a avaliação de
controladores. Apresenta-se, também, uma investigação sobre
simuladores de tráfego existentes, de modo a permitir a
escolha do mais adequado para o presente estudo. A
definição do modelo do FUNNCON compreende uma descrição
geral dos diversos módulos que o compõem. Em seguida, cada
um destes módulos é estudado separadamente: o uso de redes
neurais para a predição de tráfego futuro; a elaboração de
um banco de cenários ótimos através de um otimizador; e a
criação de regras fuzzy a partir deste banco.No estudo de
caso, o FUNNCON é implementado com dados reais fornecidos
pela CET-Rio em um cruzamento do Rio de Janeiro e comparado
com o controlador existente.É constatado que redes neurais
são capazes de fornecer bons resultados na predição do
tráfego futuro. Também pode ser observado que as regras
fuzzy criadas a partir do banco de cenários ótimos
proporcionam um controle efetivo do tráfego no cruzamento
estudado. Uma comparação entre o desempenho do FUNNCON e o
do sistema atualmente em operação é amplamente favorável ao
primeiro. / [en] This work presents the use of fuzzy logic and neural
networks in the development of a traffic signal controller -
FUNNCON. The work consists of four main sections: study of
traffic engineering fundamentals; definition of a
methodology for evaluation of traffic controls; definition
of the proposed controller model; and implementation on a
case study using real data.The study of traffic engineering
fundamentals considers definitions of terms,parameters used
for traffic flow description, types of intersections and
their traffic signals,commonly used traffic control systems
and performance measures.In order to analyse the results
provided by FUNNCON, a methodology for the evaluation of
controllers is defined. The existing traffic simulators are
investigated, in order to select the best one for the
present study.The definition of the FUNNCON model includes
a brief description of its modules.Thereafter each module
is studied separately: the use of neural networks for
future traffic prediction; the setup of a best scenario
database using an optimizer; and the extraction of
fuzzy rules from this database.In the case study, FUNNCON
is implemented with real data supplied by CET-Rio
from an intersection in Rio de Janeiro; its performance is
compared with that of the existing controller.It can be
observed that neural networks can present good results in
the prediction of future traffic and that the fuzzy rules
created from the best scenario database lead to an
effective traffic control at the considered intersection.
When compared with the system in operation, FUNNCON reveals
itself much superior.
|
52 |
[en] DESIGN, OPTIMIZATION, SIMULATION AND PREDICTION OF NANOSTRUCTURES PROPERTIES BY COMPUTATIONAL INTELLIGENCE TECHNIQUES: INTELLIGENT COMPUTATIONAL NANOTECHNOLOGY / [pt] PROJETO, OTIMIZAÇÃO, SIMULAÇÃO E PREDIÇÃO DE PROPRIEDADES DE NANOESTRUTURAS ATRAVÉS DE TÉCNICAS DA INTELIGÊNCIA COMPUTACIONAL: NANOTECNOLOGIA COMPUTACIONAL INTELIGENTEOMAR PARANAIBA VILELA NETO 12 February 2010 (has links)
[pt] Esta tese investiga a Nanotecnologia Computacional Inteligente, isto é, o apoio
de técnicas de Inteligência Computacional (IC) nos desafios enfrentados pela
Nanociência e Nanotecnologia. Por exemplo, utilizam-se as Redes Neurais para
construir sistemas de inferência capazes de relacionar um conjunto de parâmetros
de entrada com as características finais das nanoestruturas, permitindo aos
pesquisadores prever o comportamento de outras nanoestruturas ainda não realizadas
experimentalmente. A partir dos sistemas de inferência, Algoritmos Genéticos
são então empregados com o intuito de encontrar o conjunto ótimo de parâmetros
de entrada para a síntese (projeto) de uma nanoestrutura desejada. Numa outra
linha de investigação, os Algoritmos Genéticos são usados para a otimização de
parâmetros de funções de base para cálculos ab initio. Neste caso, são otimizados
os expoentes das funções gaussianas que compõem as funções de base. Em
outra abordagem, os Algoritmos Genéticos são aplicados na otimização de agregados
atômicos e moleculares, permitindo aos pesquisadores estudar teoricamente os
agregados formados experimentalmente. Por fim, o uso destes algoritmos, aliado ao
uso de simuladores, é aplicado na síntese automática de OLEDs e circuitos de Autômatos
Celulares com Pontos Quânticos (QCA). Esta pesquisa revelou o potencial
da IC em aplicações inovadoras. Os sistemas híbridos de otimização e inferência,
por exemplo, concebidos para prever a altura, a densidade e o desvio padrão de
pontos quânticos auto-organizáveis, apresentam altos níveis de correlação com os
resultados experimentais e baixos erros percentuais (inferior a 10%). O módulo de
elasticidade de nanocompósitos também é previsto por um sistema semelhante e
apresenta erros percentuais ainda menores, entorno de 4%. Os Algoritmos Genéticos,
juntamente com o software de modelagem molecular Gaussian03, otimizam os
parâmetros de funções que geram expoentes de primitivas gaussianas de funções
de base para cálculos hartree-fock, obtendo energias menores do que aquelas apresentadas
nas referencias. Em outra aplicação, os Algoritmos Genéticos também
se mostram eficientes na busca pelas geometrias de baixa energia dos agregados
atômicos de (LiF)nLi+, (LiF)n e (LiF)nF-, obtendo uma série de novos isômeros
ainda não propostos na literatura. Uma metodologia semelhante é aplicada em um
sistema inédito para entender a formação de agregados moleculares de H2O iônicos,
partindo-se de agregados neutros. Os resultados mostram como os agregados
podem ser obtidos a partir de diferentes perspectivas, formando estruturas ainda não investigadas na área científica. Este trabalho também apresenta a síntese automática
de circuitos de QCA robustos. Os circuitos obtidos apresentam grau de polarização
semelhante àqueles propostos pelos especialistas, mas com uma importante redução
na quantidade de células. Por fim, um sistema envolvendo Algoritmos Genéticos e
um modelo analítico de OLEDs multicamadas otimizam as concentrações de materiais
orgânicos em cada camada com o intuito de obter dispositivos mais eficientes.
Os resultados revelam um dispositivo 9,7% melhor que a solução encontrada na
literatura, sendo estes resultados comprovados experimentalmente. Em resumo, os
resultados da pesquisa permitem constatar que a inédita integração das técnicas de
Inteligência Computacional com Nanotecnologia Computacional, aqui denominada
Nanotecnologia Computacional Inteligente, desponta como uma promissora alternativa
para acelerar as pesquisas em Nanociência e o desenvolvimento de aplicações
nanotecnológicas. / [en] This thesis investigates the Intelligent Computational Nanotechnology, that is, the
support of Computational Intelligence (CI) techniques in the challenges faced by
the Nanoscience and Nanotechnology. For example, Neural Networks are used for
build Inference systems able to relate a set of input parameters with the final characteristics
of the nanostructures, allowing the researchers foresees the behavior of
other nanostructures not yet realized experimentally. From the inference systems,
Genetic Algorithms are then employees with the intention of find the best set of
input parameters for the synthesis (project) of a desired nanostructure. In another
line of inquiry, the Genetic Algorithms are used for the base functions optimization
used in ab initio calculations. In that case, the exponents of the Gaussian functions
that compose the base functions are optimized. In another approach, the Genetic Algorithms
are applied in the optimization of molecular and atomic clusters, allowing
the researchers to theoretically study the experimentally formed clusters. Finally,
the use of these algorithms, use together with simulators, is applied in the automatic
synthesis of OLEDs and circuits of Quantum Dots Cellular Automata (QCA). This
research revealed the potential of the CI in innovative applications. The hybrid systems
of optimization and inference, for example, conceived to foresee the height, the
density and the height deviation of self-assembled quantum dots, present high levels
of correlation with the experimental results and low percentage errors (lower to
10%). The Young’s module of nanocomposites is also predicted by a similar system
and presents percentage errors even smaller, around 4%. The Genetic Algorithms,
jointly with the package of molecular modeling Gaussian03, optimize the parameters
of functions that generate exponents of primitive Gaussian functions of base
sets for hartree-fock calculations, obtaining smaller energies than those presented
in the literature. In another application, the Genetic Algorithms are also efficient in
the search by the low energy geometries of the atomic clusters of (LiF) nLi +, (LiF)
n and (LiF) nF-, obtaining a set of new isomers yet not propose in the literature. A
similar methodology is applied in an unpublished system for understand the formation
of molecular cluster of ionic H2O from neutral clusters. The results show how
the clusters can be obtained from different perspectives, forming structures not yet
investigate in the scientific area. This work also presents the automatic synthesis of
robust QCA circuits. The circuits obtained present high polarization, similar to those
proposed by the specialists, but with an important reduction in the quantity of cells. Finally, a system involving Genetic Algorithms and an analytic model of multilayer
OLEDs optimize the concentrations of organic material in each layer in order to obtain
more efficient devices. The results reveal a device 9.7% better that the solution
found in the literature, being these results verified experimentally. In summary, the
results of the proposed research allow observe that the unpublished integration of
the techniques of Computational Intelligence with Computational Nanotechnology,
here named Intelligent Computational Nanotechnology, emerges as a promising
alternative for accelerate the researches in Nanoscince and the development of application
in Nanotechnology.
|
53 |
[en] MODELING YOUNGS MODULUS OF NANOCOMPOSITES THROUGH COMPUTATIONAL INTELLIGENCE / [pt] MODELAGEM DO MÓDULO DE YOUNG EM NANOCOMPÓSITOS ATRAVÉS DE INTELIGÊNCIA COMPUTACIONALLEANDRO FONTOURA CUPERTINO 17 March 2010 (has links)
[pt] Materiais compósitos são a base de muitos produtos, devido à sua
capacidade de aperfeiçoar certas propriedades. Recentemente, a utilização
de nanocargas na fabricação de compósitos vem sendo amplamente estudada,
pois a partir de concentrações baixas de nanocargas, as propriedades
começam a melhorar, possibilitando a criação de materiais leves e com uma
grande gama de propriedades. Uma das propriedades mecânicas mais estudadas
é o módulo de Young, que mensura a rigidez de um material. Alguns
dos modelos existentes para essa propriedade em nanocompósitos pecam na
precisão ou são limitados em função da fração máxima de nanopartículas
admissível no modelo. Outros se adequam apenas a uma determinada combina
ção de matriz/carga preestabelecida. O objetivo deste trabalho é utilizar
Redes Neurais Artificiais como um aproximador capaz de modelar tal
propriedade para diversas matrizes/cargas, levando em consideração suas
características, sem perder a precisão. A validação do aproximador é realizada
comparando o resultado com outros modelos propostos na literatura.
Uma vez validada, utiliza-se Algoritmos Genéticos em conjunto com tal rede
para definir qual seria a configuração ideal para três casos de estudo: um
que maximize o valor do módulo de Young, outro que maximize o módulo
relativo e um terceiro que maximize o módulo relativo e minimize a quantidade
de carga utilizada, diminuindo os custos de projeto. As técnicas de
Inteligência Computacional empregadas na modelagem e síntese de materiais
nanoestruturados se mostraram boas ferramentas, uma vez que geraram
uma boa aproximação dos dados utilizados com erros inferiores a 5%, além
de possibilitarem a determinação dos parâmetros de síntese de um material
com o módulo de Young desejado. / [en] Composite materials became very popular due to its improvements on
certain properties achieved from the mixture of two different components.
Recently, the use of nanofillers in the manufacture of composites has been
widely studied due to the improvement of properties at low concentrations
of nanofillers, enabling the creation of lightweight materials. Some of the
existing models for the Young modulus of the nanocomposites have low
accuracy or are limited in terms of the maximum filler fraction possible.
Others are appropriate only for a given combination of matrix and filler.
The objective of this work is to use Artificial Neural Networks as a function
approximation method capable of modeling such property for various
matrix/nanofillers, taking into account their characteristics, without losing
accuracy. The validation of this approximator is performed comparing its
results with other models proposed in the literature. Once validated, a Genetic
Algorithm is used with the Neural Network to define which would be
the ideal setting for three case studies: one that maximizes the value of composite’s
Young’s modulus, other that maximizes the relative modulus and a
third one that maximizes the relative modulus and minimizes the amount
of load used, reducing the cost of project. Computational Intelligence techniques
employed on the modeling and synthesis of nanostructured materials
proved to be adequate tools, since it generated a good approximation of the
data with errors lower than 5%, and determined the material’s parameters
for synthesis with the desired Young’s modulus.
|
54 |
[en] MACHINE LEARNING STRATEGIES TO PREDICT OIL FIELD PERFORMANCE AS TIME-SERIES FORECASTING / [pt] PREDIÇÃO DA PERFORMANCE DE RESERVATÓRIOS DE PETRÓLEO UTILIZANDO ESTRATÉGIAS DE APRENDIZADO DE MÁQUINA PARA SÉRIES TEMPORAISISABEL FIGUEIRA DE ABREU GONCALVES 19 June 2023 (has links)
[pt] Prever precisamente a produção de óleo é essencial para o planejamento e
administração de um reservatório. Entretanto, prever a produção de óleo é um
problema complexo e não linear, devido a todas as propriedades geofísicas que
com pequenas variações podem resultar em differentes cenários. Além disso,
todas as decisões tomadas durante a exploração do projeto devem considerar
diferentes algoritmos para simular dados, fornecer cenários e conduzir a boas
deduções. Para reduzir as incertezas nas simulações, estudos recentes propuseram o uso de algoritmos de aprendizado de maquina para solução de problemas
da engenharia de reservatórios, devido a capacidade desses modelos de extrair
o maxiomo de informações de um conjunto de dados. Essa tese propôe o uso
ed duas tecnicas de machine learning para prever a produção diaria de óleo
de um reservatório. Inicialmente, a produção diária de óleo é considerada uma
série temporal, é pré-processada e reestruturada como um problema de aprendizado supervisionado. O modelo Random Forest, uma extensão das arvores
de decisão muito utilizado em problemas de regressão e classificação, é utilizado para predizer um passo de tempo a frente. Entretanto, as restrições dessa
abordagem nos conduziram a um modelo mais robusto, as redes neurais recorrentes LSTM, que são utilizadas em varios estudos como uma ferramenta dee
aprendizado profundo adequada para modelagem de séries temporais. Várias
configurações de redes LSTM foram construidas para implementar a previsão
de um passo de tempo e de multiplos passos de tempo, a pressão do fundo de
poço foi incorporada aos dados de entrada. Para testar a eficacia dos modelos propostos, foram usados quatro conjunto de dados diferentes, três gerados
sintéticamente e um conjunto de dados reais do campo de produção VOlve,
como casos de estudo para conduzir os experimentos. Os resultados indicam
que o Random Forest é suficiente para previsões de um passo de tempo da
produção de óleo e o LSTM é capaz de lidar com mais dados de entrada e
estimar multiplos passos de tempo da produção de óleo. / [en] Precisely forecasting oil field performance is essential in oil reservoir planning and management. Nevertheless, forecasting oil production is a complex
nonlinear problem due to all geophysical and petrophysical properties that may
result in different effects with a bit of change. Thus, all decisions to be made
during an exploitation project must consider different efficient algorithms to
simulate data, providing robust scenarios to lead to the best deductions. To
reduce the uncertainty in the simulation process, recent studies have efficiently
introduced machine learning algorithms for solving reservoir engineering problems since they can extract the maximum information from the dataset. This
thesis proposes using two machine learning techniques to predict the daily oil
production of an offshore reservoir. Initially, the oil rate production is considered a time series and is pre-processed and restructured to fit a supervised
learning problem. The Random Forest model is used to forecast a one-time
step, which is an extension of decision tree learning, widely used in regression and classification problems for supervised machine learning. Regardless,
the restrictions of this approach lead us to a more robust model, the LSTM
RNN s, which are proposed by several studies as a suitable deep learning technique for time series modeling. Various configurations of LSTM RNN s were
constructed to implement single-step and multi-step oil rate forecasting and
down-hole pressure was incorporated to the inputs. For testing the robustness
of the proposed models, we use four different datasets, three of them synthetically generated and one from a public real dataset, the Volve oil field, as a case
study to conduct the experiments. The results indicate that the Random Forest
model could sufficiently estimate the one-time step of the oil field production,
and LSTM could handle more inputs and adequately estimate multiple-time
steps of oil production.
|
55 |
[pt] AUXÍLIO À ANÁLISE DE SÉRIES TEMPORAIS NÃO SAZONAIS USANDO REDES NEURAIS NEBULOSAS / [en] IDENTIFICATION OF NON-SEASONAL TIME SERIES THROUGH FUZZY NEURAL NETWORKSMARIA AUGUSTA SOARES MACHADO 01 December 2005 (has links)
[pt] Observando a dificuldade de batimento (match) dos padrões
de comportamento das funções de autocorrelação e de
autocorrelação parcial teóricas com as respectivas funções
e as autocorrelação e de autocorrelação parcial estimadas
de uma séries temporal, aliada ao fato da dificuldade em
definir um número em específico como delimitador
inequívoco do que seja um lag significativo, tornam clara
a dose de julgamento subjetivo a ser realizado por um
especialista de análise de séries temporais na tomada de
decisão sobre a estrutura de Box & Jenkins adequada a ser
escolhida para modelar o processo estocástico sendo
estudado. A matemática nebulosa permite a criação de
sistemas de inferências nebulosas (inferência dedutiva) e
representa o conhecimento de forma explícita, através de
regras nebulosas, possibilitando, facilmente, o
entendimento do sistema em estudo. Por outro lado, um
modelo de redes neurais representa o conhecimento de forma
implícita, adquirido através de exemplos (dados),
possuindo excelente capacidade de generalização
(inferência indutiva). Esta tese apresenta um sistema
especialista composto de cinco redes neurais nebulosas do
tipo retropropagação para o auxílio na análise de séries
temporais não sazonais. O sistema indica ao usuário a
estrutura mais adequada, dentre as estruturas AR(1), MA
(1), AR(2), MA(2) e ARMA(1,1), tomando como base a menor
distância Euclidiana entre os valores esperados e as
saídas das redes neurais nebulosas. / [en] It is well known the difficulties associated with the
tradicional procedure for model identification of the Box
& Jenkins model through the pattern matching of the
theoretical and estimated ACF and PACF. The decision on
the acceptance of the null hypothesis of zero ACF (or
PACF) for a given lag is based on a strong asymptotic
result, particularly for the PACF, leading, sometimes, to
wrong decisions on the identified order of the models.
The fuzzy logic allows one to infer system governed by
incomplete or fuzzy knowledge (deductive inference) using
a staighforward formulation of the problem via fuzzy
mathematics. On the other hand, the neural network
represent the knowledge in a implicit manner and has a
great generalization capacity (inductive inference).
In this thesis we built a specialist system composed of 5
fuzzy neural networks to help on the automatic
identificationof the following Box & Jenkins ARMA
structure AR(1), MA(1), AR(2), MA(2) and ARMA (1,1),
through the Euclidian distance between the estimated
output of the net and the corresponding patterns of each
one of the five structures.
|
56 |
[en] SEISMIC IMAGE SUPER RESOLUTION / [pt] SUPER RESOLUÇÃO DE IMAGENS SÍSMICASPEDRO FERREIRA ALVES PINTO 06 December 2022 (has links)
[pt] A super resolução (SR) é um tema de suma importância em domínios
de conhecimentos variados, como por exemplo a área médica, de monitoramento e de segurança. O uso de redes neurais profundas para a resolução
desta tarefa é algo extremamente recente no universo da sísmica, tendo poucas referências, as quais começaram a ser divulgadas há menos de 2 anos.
Todavia, a literatura apresenta uma vasta gama de métodos, que utilizam redes neurais para a super resolução de imagens naturais. Tendo isto em vista,
o objetivo deste trabalho é explorar tais abordagens aplicadas em dados sísmicos sintéticos de reservatórios. Para isto, foram empregados modelos de
importância cronológica na literatura e foram comparados com um método
clássico de interpolação e com os modelos da literatura de super resolução
de imagens sísmicas. São estes modelos: o SRCNN, o RDN, a abordagem do
Deep Image Prior e o SAN. Por fim, os resultados apresentam que o PSNR
obtido por arquiteturas de projetos no domínio da sísmica equivale a 38.23
e o melhor resultado das arquiteturas propostas 38.62, mostrando o avanço
que tais modelos trazem ao campo da sísmica. / [en] Super resolution (SR) is a topic of notable importance in domains of
assorted knowledge, such as the medical, monitoring, and security areas.
The use of deep neural networks to solve this task is something extremely
recent in the seismic field, with few references, which began to be published
less than 2 years ago. However, the literature presents a wide range of
methods, using neural networks for the super resolution of natural images.
With this in mind, the objective of this work is to explore such approaches
applied to synthetic seismic data from reservoirs. For this, models of
chronological importance in the literature were used and compared with
a classic interpolation method and with models of the literature of super
resolution of seismic images. These models are: SRCNN, RDN, the Deep
Image Prior approach and SAN. The results show that the PSNR obtained
by architectures developed for the seismic domain is equivalent to 38.23 and
the best result of the proposed architectures is 38.62, showing the progress
that such models bring to the seismic domain.
|
57 |
[en] NEURAL NETWORKS APPLIED TO PROXIES FOR RESERVOIR AND SURFACE INTEGRATED SIMULATION / [pt] REDES NEURAIS APLICADAS À CONSTRUÇÃO DE APROXIMADORES PARA SIMULAÇÃO INTEGRADA ENTRE RESERVATÓRIO E SISTEMA DE PRODUÇÃOMANOELA RABELLO KOHLER 01 August 2014 (has links)
[pt] O desenvolvimento de um reservatório de petróleo já conhecido e delimitado consiste em encontrar uma alternativa (configuração) de poços que contribua para maximizar a receita a ser obtida com o óleo recuperado do reservatório. A busca por esta alternativa frequentemente é baseada em processos de otimização que usam o valor presente líquido (VPL) do projeto como função de avaliação das alternativas encontradas durante a busca. Dentre outras variáveis, o cálculo do VPL é diretamente dependente dos dados de produção de óleo, gás e água durante a vida produtiva do reservatório, bem como de seus custos de desenvolvimento. Determinar a localização, os tipos (produtor ou injetor) e a trajetória de poços em um reservatório é um problema de otimização complexo que depende de uma grande quantidade de variáveis, dentre elas as propriedades do reservatório (tais como porosidade e permeabilidade) e os critérios econômicos. Os processos de otimização aplicados a este tipo de problema têm um alto custo computacional devido ao uso contínuo de simuladores que reproduzem as condições do reservatório e do sistema de superfície. O uso dos simuladores pode ser substituído por um aproximador, que neste trabalho, é um modelo que utiliza Redes Neurais Artificiais. Os aproximadores aqui apresentados são feitos para substituir a simulação integrada do reservatório, do poço e da superfície (linhas de produção e riser). As amostras para a construção do aproximador é feita utilizando os simuladores de reservatório e de superfície e para reduzir o número de amostras necessárias e tornar sua construção mais rápida, utiliza-se Hipercubo Latino e Análise de Componentes Principais. Os aproximadores foram testados em dois reservatórios petrolíferos: um reservatório sintético, e baseado em um caso real. Os resultados encontrados indicam que estes aproximadores conseguem bom desempenho na substituição dos simuladores no processo de otimização devido aos baixos erros encontrados e à substancial
diminuição do custo computacional. / [en] The development of an oil reservoir consists in finding an alternative of wells that contributes to maximizing the revenue to be obtained from the recovered reservoir oil. The pursuit for this alternative is often based on optimization processes using the net present value (NPV) of the project as the evaluation function of the alternatives found during this pursuit. Among other variables, the NPV calculation is directly dependent on the oil, gas and water production data during the productive life of the reservoir, as well as their development costs. Determine the number, location, type (producer or injector) and the trajectory of wells in a reservoir is a complex optimization problem which depends on a lot of variables, including the reservoir properties (such as porosity and permeability) and economic criteria. The optimization processes applied to this type of problem has a high computational cost due to the continuous use of simulators that reproduce the conditions of the reservoir and the surface system. The use of simulators may be replaced by proxies. At the present work, proxies were constructed using artificial neural networks. The proxies presented here are meant to replace the integrated reservoir, well and surface (production lines and riser) simulation to reduce the computational cost of a decision support system. The samples for the construction of the proxies are produced using reservoir and surface simulators. To reduce the number of samples needed for the proxy construction, and, to reduce the dimension of the problem, Latin Hypercube and Principal Component Analysis are used. The approximators were tested in two oil reservoirs: a synthetic reservoir, and another with real features. The results indicate that these approximators can perform well in replacement of simulators in the optimization process due to low errors found and a substantial decrease in computational cost.
|
58 |
[en] STOCHASTIC VOICE MODELING AND CLASSIFICATION OF THE OBTAINED SIGNAL USING ARTIFICIAL NEURAL NETWORKS / [pt] MODELAGEM ESTOCÁSTICA DE VOZ E CLASSIFICAÇÃO DOS SINAIS OBTIDOS USANDO REDES NEURAIS ARTIFICIAISJOSUE VALENTIN USCATA BARRIENTOS 13 May 2019 (has links)
[pt] O objetivo desta dissertação é classificar sinais de vozes, usando redes neurais, obtidos por meio de um modelo mecânico-estocástico para produção da voz humana, esse modelo foi construído a partir de uma abordagem probabilística não-paramétrica para considerar incertezas do modelo. Primeiro, uma rede neural artificial foi construída para classificar sinais de vozes reais, normais e provenientes de sujeitos com patologias nas cordas vocais. Como entradas da rede neural foram usadas medidas acústicas extraídas dos sinais glotais, obtidos por filtragem inversa dos sinais de vozes reais. Essa rede neural foi usada, posteriormente, para classificar sinais de vozes sintetizadas geradas por um modelo estocástico da produção da voz humana, no caso particular da geração de vogais. O modelo estocástico da produção da voz humana foi construído tomando por base o modelo determinístico criado por Ishizaka e Flanagan. Incertezas do modelo foram consideradas através de uma abordagem probabilística não-paramétrica de modo que matrizes aleatórias foram associadas às matrizes de massa, rigidez e amortecimento do modelo. Funções densidade de probabilidade foram construídas para essas matrizes, usando o Princípio da Máxima Entropia. O método de Monte Carlo foi usado para gerar realizaçoes de sinais de vozes. Os sinais obtidos
foram então classificados usando a rede neural construída previamente. Das realizações obtidas, alguns sinais de vozes foram classificados como normais, porém outros foram classificados como provenientes de sujeitos com patologias nas cordas vocais. Os sinais com características de patologia foram classificados em três grupos: nódulo, paralisia unilateral e outras patologias. / [en] The aim of this thesis is to classify voice signals, using neural networks, obtained through a mechanical stochastic model for voice production, this model was built from a nonparametric probabilistic approach to take into account modeling uncertainties. At first, an artificial neural network was constructed to classify real voice signals, normal and produced by subjects with pathologies on the vocal folds. As inputs for the neural network were used acoustic measures extracted from the glottal signals, obtained by inverse filtering of the real voice signals. This neural network was used, later, to classify synthesized voice signal generated by a stochastic model of the voice production, in the particular case of vowels generation. The stochastic model was constructed from the corresponding deterministic model created by Ishizaka and Flanagan, in 1972. Modeling uncertainties were taken into account through a nonparametric probabilistic approach such that random matrices were associated to mass, stiffness and damping model matrices.
Probability density functions were constructed for these matrices using the Maximum Entropy Principle. The Monte Carlo Method was used to generate realizations of the voice signals. The voice signals obtained were
then classified using the neural network previously constructed. From the realizations obtained, some voice signals were classified as normal, but others were classified as produced by subjects with pathologies on the vocal folds. The signal with pathologies characteristics were classified into three groups: nodulus, unilateral paralysis and other pathologies.
|
59 |
[en] RELAPSE RISK ESTIMATION IN CHILDREN WITH ACUTE LYMPHOBLASTIC LEUKEMIA BY USING NEURAL NETWORKS / [pt] ESTIMAÇÃO DO RISCO DE RECIDIVA EM CRIANÇAS PORTADORAS DE LEUCEMIA LINFOBLÁSTICA AGUDA USANDO REDES NEURAISJOSE LEONARDO RIBEIRO MACRINI 21 December 2004 (has links)
[pt] Esta tese propõe uma metodologia, baseada em procedimentos
quantitativos, para estimação do risco de evento adverso
(recaída ou morte) em
crianças portadoras de Leucemia Linfoblástica Aguda (LLA).
A metodologia
proposta foi implementada e analisada utilizando dados de
grupo de crianças
diagnosticadas no Setor de Hematologia do Instituto de
Puericultura e Pediatria
Martagão Gesteira (IPPMG) da UFRJ e no Serviço de
Hematologia Hospital
Universitário Pedro Ernesto (HUPE) da UERJ que constituem
uma considerável
parcela dos casos de LLA na infância registrados no Rio de
Janeiro nos últimos
anos.
A estimação do risco de recaída foi realizada através de um
modelo de
Redes Neurais após uma seqüência de procedimentos de pré-
tratamento de
variáveis e de refinamentos do método no que concerne a
saída alvo da rede.
O tratamento das variáveis é fundamental uma vez que o
número reduzido
de amostras é uma característica intrínseca deste problema.
Embora a LLA seja
o câncer mais freqüente a infância, sua incidência é de
aproximadamente 1 caso
por 100 mil habitantes por ano. Os resultados encontrados
foram satisfatórios obtendo-se um percentual de
acerto de 93% (fora da amostra) para os pacientes que
recaíram quando
comparados com o método classicamente utilizado na clínica
médica para a
avaliação do risco de recidiva (método do grupo BFM).
Espera-se que os
resultados obtidos possam vir a dar subsídios às condutas
médicas em relação à
estimativa do risco de recidiva dos pacientes, portanto,
podendo vir a ser útil na
modulação da intensidade da terapêutica. / [en] In this it is proposed a methodology, based on quantitative
procedure, to
estimate the adverse event risk (relapse or death) in Acute
Lymphoblastic
Leukemia (ALL) in children. This methodology was
implemented and analyzed
in a dataset composed by children diagnosed and treated at
the hematology
service of the Instituto de Puericultura e Pediatria
Martagão Gesteira (IPPMG)
in the Federal University of Rio de Janeiro and of the
Hospital Universitário
Pedro Ernesto (HUPE) in the University of state of Rio de
Janeiro. This group
constitutes a considerable fraction of the ALL cases in
childhood registered in
the last few years in Rio de Janeiro.
The relapse risk was estimated by a Neural Networks model
after a
sequence of variable pre-treatment procedures. This
treatment has a fundamental
importance due to the small number of cases (an intrinsic
characteristic of this
problem). Although, the ALL is the most frequent cancer in
childhood, it
incidence is approximately just 1 case for 100 000
inhabitants by year.
The obtained results may be considered excellent when
compared with the
classical risk estimative method used in the medical
clinics (BFM risk). A
perceptual of successes of 93% (out-of-sample) in no-
relapse patients was
achieved. We expect that the obtained results may subsidize
medical conduct
concerning the risk of adverse event and so it could be
useful in the treatment
intensity modulation.
|
60 |
[en] ANNCOM: ARTIFICIAL NEURAL NETWORK LIBRARY FOR HIGH PERFORMANCE COMPUTING USING GRAPHIC CARDS / [pt] ANNCOM: BIBLIOTECA DE REDES NEURAIS ARTIFICIAIS PARA ALTO DESEMPENHO UTILIZANDO PLACAS DE VÍDEODANIEL SALLES CHEVITARESE 24 May 2019 (has links)
[pt] As Redes Neurais Artificiais têm sido utilizadas com bastante sucesso em problemas de previsão, inferência e classificação de padrões. Por essa razão, já se encontram disponíveis diversas bibliotecas que facilitam a modelagem e o treinamento de redes, tais como o NNtool do Matlab ou o WEKA. Embora essas bibliotecas
sejam muito utilizadas, elas possuem limitações quanto à mobilidade, à flexibilidade e ao desempenho. Essa última limitação é devida, principalmente, ao treinamento que pode exigir muito tempo quando existe uma grande quantidade de dados com muitos atributos. O presente trabalho propõe o desenvolvimento de
uma biblioteca (ANNCOM) de fácil utilização, flexível, multiplataforma e que utiliza a arquitetura CUDA (Compute Unified Device Architecture) para reduzir os tempos de treinamento das redes. Essa arquitetura é uma forma de GPGPU (General-Purpose computing on Graphics Processing Units) e tem sido utilizada
como uma solução em computação paralela na área de alto desempenho, uma vez que a tecnologia utilizada nos processadores atuais está chegando ao limite de velocidade. Adicionalmente, foi criada uma ferramenta gráfica que auxilia o desenvolvimento de soluções aplicando as técnicas de redes neurais de forma fácil e clara usando a biblioteca desenvolvida. Para avaliação de desempenho da ANNCOM, foram realizados seis treinamentos para classificação de clientes de baixa tensão de uma distribuidora de energia elétrica. O treinamento das redes, utilizando a ANNCOM com a tecnologia CUDA, alcançou um desempenho quase 30 vezes maior do que a ANNCOM auxiliada pela MKL (Math Kernel Library) da Intel, também utilizada pelo Matlab. / [en] The Artificial Neural Networks have been used quite successfully in problems of prediction, inference and classification standards. For this reason, are already available several libraries that facilitate the modeling and training networks, such as NNtool Matlab or WEKA. While these libraries are widely used, they
have limited mobility, flexibility and performance. This limitation is due mainly to the training that can take a long time when there is a large amount of data with many attributes. This paper proposes the development of a library (ANNCOM) easy to use, flexible platform and architecture that uses the CUDA (Compute Unified Device Architecture) to reduce the training times of the networks. This architecture is a form of GPGPU (GeneralPurpose computing on Graphics Processing Units) and has been used as a solution in parallel computing in the area of high performance, since the technology used in current processors are reaching the limit of speed. Additionally created a graphical tool that helps the development of solutions using the techniques of neural networks easily and clearly using the library developed. For performance evaluation ANNCOM were conducted six trainings for customer classification of a low voltage electricity distribution. The training of networks using ANNCOM with CUDA technology, achieved a performance
nearly 30 times greater than the ANNCOM aided by MKL (Math Kernel Library) by Intel, also used by Matlab.
|
Page generated in 0.0522 seconds