• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 24
  • Tagged with
  • 143
  • 143
  • 143
  • 140
  • 134
  • 40
  • 36
  • 24
  • 23
  • 20
  • 18
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

[en] AUTOMATIC ANALISYS OF ELECTROCARDIOGRAPHIC SIGNALS USING ARTIFICIAL NEURAL NETWORKS / [pt] ANÁLISE AUTOMÁTICA DE SINAIS ELETROCARDIOGRÁFICOS POR REDES NEURAIS ARTIFICIAIS

ALEXANDRE STURMER WOLF 19 April 2004 (has links)
[pt] O objetivo dessa dissertação é o desenvolvimento de um algoritmo para a análise automática de sinais eletrocardiográficos, baseado em Redes Neurais Artificiais. O sistema é dividido em vários sub- programas utilizados para extrair informações do registro eletrocardiográfico de pacientes, informando a existência de anormalidades a partir da comparação dos valores obtidos com os valores de normalidade disponíveis na literatura biomédica. O programa utiliza 4 segundos do sinal de eletrocardiograma para uma análise classificatória inicial, verificando a viabilidade da extração de informações. Sendo possível esta extração, são obtidos os ciclos cardíacos existentes nesse sinal, e deles são extraídas informações quantitativas dos componentes de suas ondas, que posteriormente serão comparadas com faixas de normalidade por meio de um conjunto de regras heurísticas, indicando assim a possível presença de alterações morfológicas do registro. Esse programa pode ser utilizado em comunidades carentes para orientar a necessidade de encaminhamento a um especialista, cuja presença é rara na maior parte dos postos de atendimento generalista. Também pode auxiliar ao médico especialista, indicando de forma objetiva as possíveis alterações do registro eletrocardiográfico. Os resultados obtidos podem ser considerados satisfatórios, sendo que os valores são compatíveis com a sua natureza, principalmente no que diz respeito aos problemas de baixa razão sinal/ruído existente nos sinais analisados. Para verificação dos resultados de localização dos pontos inicial e final de cada componente do ECG, uma das métricas utilizadas foi o MAPE, obtendo-se, 19,44 por cento para onda P,4,85 por cento para o complexo QRS, 8,93 por cento para o início da onda T e 7,76 por cento para o final da onda T. Outra métrica utilizada para comparar os resultados obtidos com outro artigo, foi a Média Aritmética/Desvio Padrão, onde se obteve mi=-0,8264 ms e sigma=3,7037 ms para o início da onda P, mi=-1,5082 ms e sigma=2,2890 ms para o fim da onda P, mi=-0,2104 ms e sigma=3,2486 ms para o início do complexo QRS, mi=-0,4309 ms e sigma=3,9542 ms para o fim do complexo QRS, mi=-0,1926 ms e sigma=5,7413 ms para o início da onda T, mi=-0,3346 ms e sigma=6,3991 ms para o fim da onda T. / [en] The objective of this dissertation is implementing an algorithm for automatic analysis of electrocardiographic signals, using Artificial Neural Networks. The system is divided into several subprograms that extract relevant information about the cardiac signal measured from patients, and points out possible abnormalities by comparison with normal values found in biomedical bibliography. The algorithm uses 4 seconds of the electrocardiogram signal for an initial classification, verifying the feasibility of information extraction. If the extraction is possible, the separate cardiac cycles are collected from the signal and quantitative values for the various components are determined. Finally, these values are compared with the normal values, indicating alterations of wave morphology. This algorithm has a clear relevance in low-income communities, being useful for an initial classification of the patients, being then forwarded to a cardiologist when ECG abnormalities are identified. Another potential use is in helping the cardiologist to automatically determine accurate values from the electrocardiographic register. The results can by considered satistactory, because the values are being compatible with their nature, mainly due to problems of low signal-to-noise ratio in analysed signals. For verification of the results, one metric used was the MAPE, obtaining 19,44 percent for the P wave, 4,85 percent for the QRS complex, 8,93 percent for the begining of the T wave and 7,76 percent for the end of T wave. Another metric used for comparing results with another article, was the Arithmetic Mean/Standard Deviation, obtaining u=-0,8264 ms and ó=3,7037 ms for the onset of the P wave, u=-1,5082 ms and ó=2,2890 ms for the offset of P wave, u=-0,2104 ms and ó=3,2486 ms for the onset of the QRS complex, u=-0,4309 ms and ó=3,9542 ms for the offset of the QRS complex, u=-0,1926 ms and ó=5,7413 ms for the onset of the T wave, u=-0,3346 ms and ó=6,3991 ms for the offset of the T wave.
12

[en] FORECASTING TEMPERATURES IN POWER TRANSFORMERS COMBINING LINEAR MODELS AND NEURAL NETWORKS / [pt] SISTEMA PARA PREVISÃO DE ELEVAÇÃO DE TEMPERATURA EM TRANSFORMADORES DE POTÊNCIA COMBINANDO MODELOS LINEARES E REDES NEURAIS

RICARDO CUNHA DA FONTE 23 September 2002 (has links)
[pt] O novo cenário competitivo, inaugurado com a reformulação do Setor Elétrico Brasileiro, impõe a seus agentes, principalmente as concessionárias de energia elétrica, a necessidade de ferramentas que os possibilitem gerenciar melhor seus recursos. No caso específico dos ransformadores de potência, ativos cujo investimento inicial é muito elevado,a otimização do retorno financeiro envolve o balanço adequado entre as receitas advindas da energia por ele transportada e os custos decorrentes da depreciação real, principalmente os relacionados à perda de vida útil do transformador como resultado da exposição do isolamento sólido a níveis de temperatura prejudiciais. A presente dissertação propõe o emprego de um modelo para previsão de séries temporais, aplicado a séries de elevação de temperatura do enrolamento de transformador de potência, combinando modelos lineares e Redes Neurais Artificiais. São revistos e analisados os principais métodos lineares de previsão baseados em variáveis explicativas, sendo estes, juntamente com o modelo proposto,aplicados à previsão da elevação de temperatura de transformadores reais. Os resultados obtidos comprovam o efeito sinérgico conseguido com a combinação de modelos lineares com Redes Neurais. / [en] The new competitive scenario, that came up as result of the restructuring of the Brazilian Electric Energy Sector, imposes to its agents the need of tools suitable for better resource management. On the specific case of power transformers, which represent one of the most important investment items, the optimal payback involves a suitable balance between revenues related to the energy transported and the actual depreciation costs, mainly those related to the loss of the transformer s useful life, due the degradation of solid insulation by temperature. The present dissertation proposes a time series model, applied to power transformer winding temperature rise forecasting, which combines linear models and artificial neural networks. The main linear forecast methods based on explanatory variables are revised and analyzed, and, together with the proposed model, applied to temperature forecast on real transformers. The results confirm the synergic effect obtained when using linear models with artificial neural networks.
13

[en] CLUSTERING VIBRATION DATA FROM OIL WELLS THROUGH UNSUPERVISED NEURAL NETWORK / [pt] CLUSTERIZAÇÃO DE DADOS DE VIBRAÇÃO NA PERFURAÇÃO DE POÇOS DE PETRÓLEO ATRAVÉS DE REDES NEURAIS NÃO SUPERVISIONADAS

BRUNO ROMANELLI MENECHINI ESTEU 14 August 2015 (has links)
[pt] A perfuração de poços de petróleo em águas profundas tem como objetivo atingir o melhor ponto de extração de óleo e gás natural presentes em reservatórios a alguns milhares de metros no fundo do mar. Um melhor entendimento da dinâmica de perfuração através da análise de parâmetros operacionais em tempo real é importante para otimizar os processos de perfuração e reduzir seus tempos de operação. Com esse objetivo, operadoras de petróleo têm realizado grandes investimentos no desenvolvimento de ferramentas de medição e transmissão de parâmetros durante a perfuração, tais como, entre outros, o peso sobre broca, rotação da coluna e vazão do fluido de perfuração. Dentre as vantagens em se monitorar estes dados em tempo real, destaca-se a otimização de parâmetros operacionais buscando obter uma taxa de penetração satisfatória com o menor gasto de energia possível. Em uma perfuração rotativa, essa energia é muitas vezes parcialmente dissipada devido à vibração da coluna causada pela interação entre broca e formação. Nesta dissertação, com o objetivo de extrair características comuns que pudessem vir a ajudar na otimização da atividade de perfuração, foi utilizada uma técnica de redes neurais não supervisionadas para análise de uma extensa base de dados levantados ao longo de campanhas de perfuração de poços em um mesmo campo de petróleo. Os dados de campo analisados foram obtidos ao longo de perfurações de poços verticais, exclusivamente empregando brocas tipo PDC e exibindo elevados níveis de vibração torcional. O estudo realizado a partir de registros de parâmetros de perfuração, características dos poços e respostas de vibração obtidas em tempo real por ferramentas de poço, e empregando o código de mineração de dados WEKA e a plataforma computacional de análise TIBCO Spotfire, permitiu a determinação de uma curva de desgaste de broca e a influência das ferramentas de navegação no nível de severidade de vibração ao longo da perfuração. / [en] Drilling oil wells in deep waters aims to achieve the best point of extraction of oil and natural gas reservoirs present in a few thousand meters in the seabed. A better understanding of the drilling dynamics through the analysis of real time operation parameters is important to optimize drilling process and reduce operation time. For this purpose petroleum operator companies have been made great investments in developing tools that measure and transmit parameters during drilling operation, such as the weight on bit, pipes rotation per minute and drilling fluid flow. Among the advantages to monitor this real time data there is the operational parameters optimization looking for the least expenditure of energy as possible. In a rotary drilling operation this energy is often lost partially due to column vibration caused by the interaction between bit and formation.In this master s thesis in order to extract common features that could help on the drilling operation optimization a technique using unsupervised neural networks for analyze an extensive database which was built over drilling campaigns in a big oil field . The field data analyzed were obtained during drilling vertical wells exclusively employing PDC bits and presented high levels of torcional vibration. The study was made from drilling parameters records, wells characteristics and vibration responses obtained in real time by downhole tools. Employing the WEKA data mining code and the computing analysis platform TIBCO potfire it was possible determine a bit wear curve and the real influence of navigation tools on the severity levels of vibration during drilling operations.
14

[en] ARTIFICIAL NEURAL NETWORKS ON INFERENTIAL MODELLING OF PROPERTIES OF PETROLEUM PRODUCTS / [pt] REDES NEURAIS APLICADAS NA INFERÊNCIA DE PROPRIEDADES DE DERIVADOS DE PETRÓLEO

GIL ROBERTO VIEIRA PINHEIRO 07 August 2006 (has links)
[pt] Este trabalho investiga a utilização de Redes Neurais Artificiais (RNAs) na inferência sobre as propriedades de derivados de petróleo. A inferência de propriedades visa fornecer uma boa estimativa de propriedades de derivados de petróleo (p.ex: ponto final de ebulição, pressão de vapor, etc.). Essas propriedades podem ser determinadas pro analisadores de processo ou análises de laboratório. Contudo, esses sistemas nem sempre apresentam resultados satisfatórios ou na freqüência necessária para permitir o controle. Porém, se o valor estimado de uma determinada propriedade estiver disponível, o mesmo pode ser utilizado para permitir o controle ou a otimização do processo produtivo. Este trabalho subdivide-se em quatro partes principais: (1) um estudo sobre a inferência de propriedades em torres de destilação; (2) um estudo sobre os principais métodos de inferência e de análise de dados, com ênfase nas RNAs; (3) uma sistemática para a obtenção e testes de modelos; e (4) o estudo de casos. No estudo sobre os a inferência de propriedades, foram analisadas as técnicas utilizadas para a estimação de propriedades em torres de destilação, enfatizando os aspectos da estrutura da modelagem, os problemas, os problemas da influência cruzada entre as entradas do modelo, e a determinação das variáveis principais a serem utilizadas na modelagem. O estudo sobre os principais métodos de inferência abrangeu um levantamento bibliográfico sobre as técnicas de regressão linear MLR ( Multiple Linear Regression), PCR (Principal Component Regression) e PLS (Partial Least Squares), a Modelagem Semi-empírica e as RNAs. Apesar do objetivo principal deste trabalho ser avaliar o desempenho das RNAs, o estudo dos outros métodos foi importante para a comparação dos resultados. Além dos diferentes métodos de modelagem, foram também estudadas algumas técnicas de análise do conjunto de dados, entre elas o PCA (Principal Component Analysis). Na sistemática para a obtenção e testes de modelos, são apresentados os diversos problemas encontrados e a abordagem utilizada, na obtenção e avaliação dos modelos. É também apresentado o ambiente de testes e avaliação, que foi desenvolvido visando fornecer uma plataforma para a obtenção e avaliação de modelos inferenciais. Neste ambiente, pode-se obter modelos com todos os métodos estudados, inclusive alterando alguns parâmetros importantes. No ambiente foram utilizadas as facilidades do pacote MATLAB. Para o estudo de casos, foram utilizados dados reais de refinarias de petróleo do sistema Petrobrás. Foram analisados 3 casos distintos: o primeiro corresponde à modelagem da destilação ASTM do Querosene; o segundo abrangendo a destilação ASTM do Óleo Diesel e o terceiro sobre o Intemperismo do GLP. Para todos os casos, analisou- se a influência de cada entrada sobre a variável a ser modelada, utilizando principalmente a técnica PCA . Foram avaliadas várias arquiteturas de RNAs, comparando-as com as outras técnicas estudadas. Os modelos obtidos com as RNAs foram plenamente satisfatórios, fornecendo resultados superiores aos métodos estatísticos. Também constatou-se a influência do pré-processamento e da análise estatística dos dados no sucesso da modelagem. Na indústria química e petroquímica, as RNAs têm sido aplicadas em diversas áreas. Na área de inferência de propriedades, as RNAs permitem a obtenção de modelos de inferência abrangentes e precisos, podendo ser utilizadas no controle em tempo real, nos arranjos de controle em malha simples, ou em arquiteturas de controle multivariável. / [en] This work investigates the use of Artificial Neural Networks (ANN) on the inferential modelling of properties of petroleum products. Inferential modelling aims to provide a good estimation of chemical properties of petroleum products (i.e: final boiling point, vapour pressure). These properties can be determined by on-line process analysers or laboratory analysis. However, these systems provide neither systematically good results nor the necessary frequency to allow control of the process in real time. However if a good estimation of a property of interest is available, it can be used to achieve the control or the optimisation of production process. This work is subdivided in four main sections: (1) a study about the inference of properties of products in a distillation column; (2) a study about the main methods used on inferential modellind and data analysis, with emphasis on ANN; (3) a systematic about development and testing of inference models; (4) and a case study. In the study about principal methods used on inferential modelling involved a bibliographic reserch about the linear regression techniques Multiple Linear Regression (MLR), Principal Component Regression (PCR) and Partial Least Squares (PLS), a semi empirical model and ANNs. Although the main objective of this work was to evaluate the ANNs perfonmance, the study of other methods was important to compare the results. In addition to the many modelling techniques, some other techniques of data analysis were studied, like Principal Component Analysis (PCA). In the systematic about the development and testing of models, the various problems encontered and the approach used to develop and test the model were presented. An environment of development and testing was also implemented in order to provide a platform to produce and test inferential models. The environment can work with all models studied, and some important settings of the models can also be modified. Many capabilities fo MATLAB software were used on the environment. For the development of the case studies, real data gathered from refineries of Petrobras group were used. Three distinct cases were analysed: the first and second cases are models of kerosene (jet fuel) and diesel ASTM distillation; the third is a model of the Liquefied Petroleum Gas (LPG) 95% boil-off point. In all cases, the influence of each input over the modelled variable was analysed, using mainly the PCA technique. Many ANN arquitetures were tested, comparing them with other studied techniques. The developed ANN models achieved good performance, with better results than the statistical methods. It was also verified the influence of pre- processing and statistical analysis on the success of the modeling. Chemical and Petrochemical process industries have used ANNs in many areas. In the field of inferential modelling of properties, the ANNs allow the accomplished of inferential models in a broad and accurate way. It may be used either for control in real time in single control loops or as part of a multivariable controller.
15

[en] ANALYSIS OF CRITICAL HEAT FLUX IN PWR NUCLEAR REACTORS USING ARTIFICIAL NEURAL NETWORKS / [pt] ANÁLISE DE FLUXO CRÍTICO DE CALOR EM REATORES NUCLEARES DO TIPO PWR UTILIZANDO REDES NEURONIAIS ARTIFICIAIS

BELMIRO RUFINI VALENTE 16 April 2012 (has links)
[pt] A ocorrência de fluxo crítico de calor – FCC – é o principal fator termo-hidráulico limitante à produção de energia em reatores nucleares do tipo PWR (Reator a Água Pressurizada). O método usual de determinação de FCC é baseado em simulação numérica, utilizando programas como os COBRA, desenvolvidos a partir da análise dos subcanais do núcleo do reator. Esses programas implementam uma correlação, ou função empírica, que interpola os resultados obtidos por simulação experimental, realizada nas Seções de testes – ST-, de forma a obter o FCC numa ampla faixa operacional do reator. Esta dissertação propõe e investiga um método alternativo de determinação de FCC empregando, como correlação, redes neuronais artificiais – RNA. Neste método, as RNA são obtidas a partir de treinamento, utilizando o paradigma de backpropapagation, realizado com o mesmo conjunto de dados experimentais oriundos das STs. / [en] Critical Heat Flux – CHF – occurence is the main thermo-hydraulical factor that restrains the energy produced in Pressurized Water Reactor – PWR – nuclear plants. The usual method of determining CFCH is based upon numerical simulation performed by computer programs such as COBRA, which were developed considering the reactor core sub-channel analysis. These programs implement a correlation, or empirical function, wich interpolates the results obtained through experimental simulation, acocomplished on test sections – TSs – for the sake of obtaining CHF in a wide core operational range. This work investigate and analyze an alternate method of detrmining CHF using, as a correlation, artificial neural networks – ANNs. In this method, the ANNs are obtained through trainning, making use of backpropagation paradigm, against the same experimental data set that came from the TSs.
16

[en] NEURAL NETWORKS FOR PREDICTIVE MAINTENANCE ON OFF-HIGWAY TRUCKS / [pt] REDES NEURAIS NA MANUTENÇÃO PREDITIVA DE CAMINHÕES FORA DE ESTRADA

FELIPE MIANA DE FARIA FURTADO 27 May 2010 (has links)
[pt] Com o aumento da demanda por minério no mundo, a complexidade, o tamanho e o preço dos equipamentos de extração mineral aumentaram consideravelmente. Como estas máquinas possuem uma tecnologia de monitoramento embarcada no equipamento, a utilização desses dados para o aumento da confiabilidade e da disponibilidade do equipamento tornou-se fundamental, de modo a reduzir os custos de manutenção. O objetivo desta dissertação foi desenvolver um modelo de apoio à decisão de parada de equipamento, baseado na classificação por Redes Neurais Artificiais de padrões pré-falha de caminhões fora de estrada. O modelo proposto tem como objetivo identificar o estado de falha, ou padrão pré-falha de um equipamento, utilizando os dados armazenados nos equipamentos e seus respectivos registros de falha, para que seja possível avaliar o risco de falha deste equipamento e decidir se o mesmo deve ser parado ou aguardar uma nova parada programada. Essa dissertação foi desenvolvida em quatro partes: estudo dos principais modelos de manutenção atualmente utilizados; definição e desenvolvimento do modelo para abordar o problema, baseado em redes neurais artificiais; avaliação de desempenho do modelo proposto; e simulação do downtime da máquina utilizando o modelo de decisão proposto. No estudo dos principais modelos foi realizada uma pesquisa bibliográfica sobre a evolução da manutenção, passando por modelos de manutenção corretiva, manutenção preventiva e, por fim, chegando ao modelo de manutenção baseada no monitoramento de condições. Para os dois últimos tipos de manutenção, foram apresentados os principais modelos utilizados na abordagem do problema, seus benefícios e deficiências. O desenvolvimento do modelo foi segmentado em três etapas principais: tratamento das bases de dados, tanto de dados obtidos diretamente do equipamento quanto das bases de registro de falha dos equipamentos; seleção de variáveis, baseada no cálculo da influência de cada sensor do equipamento na determinação de seu estado de falha, assim como na definição do intervalo ideal para se agrupar os dados; e definição da topologia das redes. Na etapa de avaliação do desempenho do modelo proposto foram utilizados dados de falhas corretivas mais recorrentes para os dois componentes específicos de caminhões fora de estrada: motor e transmissão, sendo que o monitoramento eletrônico do motor é mais extenso do que o de transmissão, no que diz respeito ao número de sensores empregados no monitoramento. Para a comparação de desempenho entre os diferentes modelos avaliados, dois fatores tiveram maior relevância: melhor desempenho na classificação e maior intervalo entre a identificação do padrão pré-falha e a ocorrência da falha. Os resultados de classificação dos padrões pré-falha foram bastante satisfatórios para a maioria dos casos de estudos, com as taxas de acerto variando entre 85% e 95%. A partir do modelo de classificação determinado na etapa anterior, passou-se à simulação de diferentes cenários de falhas, calculando-se os tempos de máquina parada (downtimes) que teriam sido evitados se as intervenções definidas pelo modelo tivessem sido executadas, analisando-se, assim, o aumento de disponibilidade proporcionado pelo uso do modelo proposto. / [en] With the increasing demand for ore in the world, the complexity, size and price of mining equipment have increased considerably. As these machines have embedded monitoring technology, the use of such data to increase the reliability and availability of the equipment has become essential in order to reduce maintenance costs. The objective of this work is developing a model that supports the decision of stopping an equipment, based on its actual state, using pattern recognition by neural networks. The proposed model aims to identify the state of equipment failure or pre-failure based on the data stored in the equipment and on the records of failure, so as to assess the risk of failure of equipment and to decide whether it should be stopped or wait for a new programmed shutdown. This dissertation was developed in four parts: study of the main models currently used for maintenance; design and implementation of the model to address this problem, based on artificial neural networks; performance evaluation of the proposed model; and simulation of equipment downtime using the proposed model. In the study of the main models a research was made about the evolution of maintenance techniques, through models of corrective maintenance, preventive maintenance and, finally, reaching the maintenance model based on condition monitoring. For the last two types of maintenance, it is presented the main models used in addressing the problem, its benefits and shortcomings. The development of the model was segmented into three main stages: processing of databases, from the data obtained directly from the equipment to the base of record of equipment failure; variable selection, based on the calculation of the influence of each equipment sensor to determine its failure state, as well as the definition of the ideal range of group data, and definition of the topology of networks. In the stage of assessing the performance of the proposed model we used data from corrective failures more often of two specific components of off-highway trucks: engine and transmission. To compare the performance between the different models evaluated, two factors were more important: classification performance and the longest interval between the identification of a pre-failure pattern and the occurrence of the failure. The results of classification of pre-failure patterns were quite satisfactory for most case studies, with hit rates ranging between 85% and 96%. From the classification model given in the previous step, we moved on to simulate different failure scenarios, calculating the equipment downtime that would have been avoided if the interventions defined by the model had been implemented, thus analyzing the increased availability provided by the use of the proposed model.
17

[en] HYBRID DECISION SUPPORT SYSTEM FOR DETECTION AND DIAGNOSIS OF FAULTS IN ELECTRICAL NETWORKS / [pt] SISTEMA HÍBRIDO DE APOIO À DECISÃO PARA DETECCÇÃO E DIAGNÓSTICO DE FALHAS EM REDES ELÉTRICAS

LUIZ BIONDI NETO 17 November 2006 (has links)
[pt] O presente trabalho investiga a aplicação de um sistema híbrido baseado em Redes Neurais Artificiais (RNAs) e Sistemas Especialistas (SE) na detecção e diagnóstico de falhas em redes elétricas. A pesquisa consistiu de três partes principais:o estudo do problema da detecção e diagnóstico de falhas em redes elétricas; a modelagem e o desenvolvimento do sistema híbrido (RNAs e SE); e o estudo de casos. Na fase de estudo do problema, investigou-se a importância da detecção e do diagnóstico de falhas em redes elétricas, concentrando-se em sistemas elétricos dotados de grande quantidade de alarmes. Tais alarmes podem ocorrer simultaneamente. Conseqüentemente, os operadores de sistemas elétricos encontram dificuldades na identificação da falha e na tomada de decisão quanto à ação corretiva a ser adotada, cometendo, eventualmente, erros de diagnóstico. A investigação do problema também envolveu entrevistas com especialistas da área, visando não só de absorver conhecimento específico sobre o problema, como também delinear a melhor solução para resolvê-lo. A modelagem do sistema híbrido envolveu duas partes:a detecção das falhas, executada por um conjunto de RNAs; e o diagnóstico das falhas detectadas , realizado por um SE. Na detecção das falhas, um conjunto de quatro RNAs, cada uma especializada em um componente do sistema elétrico (gerador, transformador, barra e linha), tem a função de mapear grupos de alarmes acionados em falhas específicas. Trata-se, portanto, de um problema típico de classificação de padrões, onde cada rede neural é treinada usando-se o algoritmo de retropropagação. Os padrões de treinamento, fornecido por especialistas da área, consistem de combinações de 149 alarmes, para um total de 198 ocorrências (184 falhas simples mais 14 situações de operação normal). Após treinadas, as RNAs são testadas com amostras que refletem o estado dos alarmes em um certo período de funcionamento do sistema elétrico. As saídas das RNAs indicam, através de um código, a ocorrência de falhas ou o funcionamento normal do sistema elétrico, nesse período de observação. O SE, responsável pelo diagnóstico, recebe a saída numérica das RNAs, referente às falhas detectadas, e fornece ao operador informações importantes, tais como: quais alarmes foram acionados; quais equipamentos de proteção estão envolvidos na ocorrência; quais os motivos prováveis da ocorrência da falha; e, finalmente, sugere um conjunto de ações corretivas que podem ser tomadas pelo operador para solucionar o problema. Essas informações, não disponíveis diretamente na saída das RNAs, são obtidas através da aplicação de um conjunto específico de especialistas da área. O ambiente de simulação foi desenvolvido em plataforma PC. As RNAs foram implementadas em MatLab Vers: 4.2 e o SE, em Delphi Vers: 2.0. O estudo de casos empregou cerca de 1000 padrões de teste correspondentes ao estado dos 149 alarmes. Estes dados, fornecidos por especialistas do setor elétrico, foram obtidos através de adaptações de situações reais, adequadas ás dimensões do sistema elétrico adotado. Nos testes realizados, o sistema híbrido foi submetido a um conjunto de alarmes, afetados ou não por ruído, respondendo com sugestões quanto às ações corretivas que podem ser tomadas pelo operador. Foram realizados testes de falhas em geradores, tranformadores, barramentos e linhas de transmissão, envolvendo falhas simples e múltiplas no sistema elétrico. Com incidência de até 10% de ruído nos padrões de teste, o índice de acerto de detecção de falha é próxima de 100% e para taxas superiores a 20% o desempenho do sistema híbrido cai gradualmente. Segundo a avaliação de especialistas do setor elétrico, o sistema híbrido apresenta resposta rápida e segura, quando comparado com os processos tradicionais, / [en] This work examines the application of hybrid systems based on Artificial Neural Networks (ANN) and Expert Systems (ES) in detecting and diagnosing faults in Electrical Systems. The research consists of three main parts: the study of cases. In the study of problem, was examined, the importance of detecting and diagnosing faults in Electrical Systems concentrating in Electric Systems equipped with a large quantity of alarms. These alarms may occur simultaneously. Consequently, it is difficult for the electrical systems´operators to identify the faults and decide the corrective action to be adopted, resulting, eventually, in diagnosis erros. The analysis of the problem also involved some interviews with experts in the area, in order to absorb the specific knowledge about the problem, and design the best solution to solve it. The modeling of the Hybrid System involved two parts: the detection of faults, executed by a group of ANNs; and the diagnosis of the detected faults, fulfilled by the ES. In the detection module, a group of four ANNs, each one specialized in an electrical system component (generators, transformers, buses and transmission lines) maps groups of alarms in the specific faults. Therefore, this is a typical pattern classification problem, where each neural network is trained by using the error backpropagation algorithm. The training patterns, produced by experts in the area, consist of the combination of 149 alarms for a total of 184 simple faults and 14 normal operation situations. After training, the ANNs are tested with new samples of alarms, reflecting a certain configuration of the electrical system during the observation period. The ES module, responsible for the diagnosis, receives the ANNs outputs related to the detected faults, and provides to the operator important informations such as: Which alarms were started; the protective equipment involved in the occurrence; the problable reason for the occurrence of the faults; and finally, suggests the corrective action that the operator should perform in order to solve the problem. This information, not available in the ANNs outputs, can be obtained through the application of a set of production rules in a data base, containing the specific knowledge that were extracted from the experts in the area. The simulation environment was developed in a PC plataform. The ANNs, were implemented in MatLab Vers.4.2 and the ES in Delphi. The case studies, applied about 1000 test patterns corresponding to the situation of the 149 alarms. These data, provided by experts of the electrical sector, are adapted from real situations to the dimensions of the Electrical System adopted. In the tests performed, the Hybrid System is submitted to a group of alarms, affected or not by the noise, and reply with suggestions regarding corrective actions that can be adopted by the operator. Various tests were carried out in the generators, transformers, buses, and transmission lines involving simple and multiple faults in the Electrical Power System. With incidence of up to 10% of noise in the test pattern, the performance in detecting fault is near of 100% and for rates superior of 20%, decreases gradually. The evaluation of experts in the electrical sector shows that, the Hybrid System presents a quicker and safer answer, when compared with traditional processes, totally dependent on the human being.
18

[en] HANDWRITTEN DIGITS RECOGNITION BY NEURAL NETWORKS / [pt] RECONHECIMENTO DE DÍGITOS MANUSCRITOS POR REDES NEURAIS

MARIA ANGELICA PEREIRA FREIXINHO 18 September 2006 (has links)
[pt] Esta dissertação investiga a utilização de Redes Neurais Artificiais (RNAs) na área de reconhecimento de caracteres, em particular de dígitos manuscritos. Nesta investigação foram utilizadas amostras reais de dígitos isolados e de códigos postais brasileiros relativos e vários escritores. O trabalho consiste de quatro partes principais: o estudo das metodologias de reconhecimento e da semântica e estrutura de representação de caracteres; o desenvolvimento das etapas de pré-processamento dos dígitos; o desenvolvimento das RNAs para o reconhecimento de dígitos manuscritos; e o estudo de casos. No estudo sobre a metodologia de reconhecimento de caracteres fez-se um levantamento preliminar das diversas aplicaões de sistemas OCR (Optical Character Recognition). Enfatizou-se a classificação dos diversos tipos de semânticas existentes de acordo com a aplicação específica, bem como a estrutura geral de um sistema OCR. O estudo também consistiu da análise e apresentação de modelos convencionais e de sistemas inteligentes na implementação da etapa de classificação dos sistemas OCR. O desenvolvimento do pré-processamento dos dígitos envolveu um extenso estudo bibliográfico de diversas metodologias para cada uma de suas etapas. Foram estudados os algoritmos mais empregados nas etapas de pré- processamento de um sistema. OCR: conversão de níveis de cinza para representação binária ( thresholding), filtragem, segmentação e normalização. A partir desse estudo, foram selecionados e desenvolvidos determinados tipos de algoritmos para o pré-processamento. No desenvolvimento de RNAs para o reconhecimento de dígitos manuscritos fez-se uma investigação de diversas metodologias, incluindo as arquiteturas e os algoritmos de aprendizado mais empregados. Neste estudo, constatou-se a predominância do uso do algoritmo de retropropagação do erro (BackPropagation) para o treinamento das redes nas aplicações de reconhecimento de caracteres manuscritos. As arquiteturas propostas neste trabalho foram escolhidas de acordo com dois tipos de aplicados de reconhecimento: reconhecimento de dígitos manuscritos isolados e reconhecimento automático de código postal. No estudo de casos, as RNAs foram modeladas para fazer o reconhecimento automático de código postal. Este estudo consistiu de um conjunto de implementações com o objetivo de testar o desempenho de um sistema OCR baseado em redes neurais. Foram feitos testes com dois tipos de sistemas de reconhecimento por redes neurais: redes totalmente conectadas e redes parcialmente. Para os dois casos foram utilizados amostras reais colhidas de 73 escritores. Os resultados obtidos com os dois tipos de redes foram comparados e comprovaram a superioridade das RNAs com arquitetura parcialmente conectada no reconhecimento de dígitos altamente ruidosos. Comparações também foram feitas com outras técnicas convencionais de reconhecimento, obtendo-se resultados, em muitos casos, superiores. / [en] This dissertation investigates the use of Artificial Neural Networks (ANNs) for character recognition, especially handwritten digits. Real samples of isolated and postal code digits were used from different writers. The dissertation covers four main part: the study of methodologies, semantics and structure on character recognition and its representation; the development of the digits preprocessing phases; the design of ANNs to handwritten digits recognition; and the case studies. The first part of this dissertation studies methodologies, semantics and structures used on character recognition. The result of this study is an overview of the major aplication in OCR (Optical Character Recognition). Different kinds of semantics and their structures were classified according to each specific application. Several conventional models and intelligent systems, used in the classification stage of OCR systems, had also been discussed. The development of the digits preprocessing involved the investigation of different methodologies related to each preprocessing phase. The most used algorithm for each preprocessing phase were considered: thresholding, smoothing, segmentation and normalization. According to this study, specific algorithms were selected and developed. In the design of ANNs for handwritten digits recognition, different methodologies had been investigated, including the architetures and the learning algorithms most used. This overview confirmed the predominance of BackPropagation as the training algorithm for the Neural Network in this application. The architetures proposed in this work had been selected according to two types of applications of character recognition: isolated handwritten digits recognition and postal address code recognition. The case studies consisted of the designing of an ANN to postal address code recognition. The case studies involved testing the system performance for two kinds of ANNs: fully connected networks and partially connected networks. In both cases, samples of 73 writers were used. The results were compared to each other, confirming the superiority of partially connected ANN in handling noisy digits. The ANN perfomance was also compared with the perfomance of other conventional techniques, achieving better results in many cases.
19

[en] DATA DEBUGGING FOR REAL-TIME POWER SYSTEM MONITORING BASED ON PATTERN ANALYSIS / [pt] DEPURAÇÃO DE DADOS NA SUPERVISÃO EM TEMPO-REAL DE SISTEMAS DE POTÊNCIA VIA TÉCNICA DE RECONHECIMENTO DE PADRÕES

JULIO CESAR STACCHINI DE SOUZA 30 June 2006 (has links)
[pt] Na supervisão em tempo-real de sistemas de potência é fundamental que as informações recebidas do sistema de aquisição de dados não contenham erros. As decisões tomadas durante a operação do sistema se baseiam em análise que utilizam uma base de dados supostamente confiável. A presença de erros nos dados compromete as análises realizadas conseqüentemente as decisões tomadas a partir delas, podendo ocasionar problemas para a operação do sistema. Este trabalho propõe um novo método para a identificação de erros nos dados na supervisão em tempo-real de sistemas de potência. Técnicas de projeção de dados baseadas no mapa de Kohonen são utilizadas para mostrar que as inovações normalizadas, obtidas no estimadores de estado com capacidade de previsão, apresentam excelente capacidade de discriminação de erros quando comparadas a outras variáveis tais como medidas cruas e resíduos normalizados. É proposto um método que trata o problema de identificação de erros de dados como um problema de reconhecimento de padrões, onde as inovações normalizadas são utilizadas como variáveis de entrada para uma rede neural plástica que é responsável por identificar o erro presente. O método é capaz de tratar de forma integrada erros grosseiros nas medidas de erros topológicos envolvendo ramos de transmissão ou barras. Método proposto é testado para várias condições de operação envolvendo os mais diversos tipos de erro, utilizando os sistemas IEEE 24-barras e IEEE 118-barras. O desempenho do método é avaliado e aspectos como eficiência computacional, capacidade de generalização e implementação em tempo-real, entre outros, são também discutidos. / [en] Bad data detection and identification is one of the most important problems to be solved in real-time power system monitoring. During system operation, the decision-making process is based on analyses that use a database which is assumed to be reliable. Bad data can affect the results of these analyses and as a consequence the decisions taken may not be valid anymore. This may cause serious problems to system operation. This work presents a new method for debugging data in real- time power system monitoring. Data projection tecniques based on Kohonen´s self-organizing maps are employed to show that normalized innovations, obtained from a forecasting-aided state estimator, present excellent discrimination capability when compared to other variables such as raw measurements and normalized residuals. In the proposed method the problem of bad data identification is viewed as a pattern recognition problem, in which normalized innovations are use as input variables to a constructive artificial neural network that is responsible for identifying bad data. The method is able to distinguish between gross measurement and topological errors. Which can include branch or bus misconfigurations. The proposed method is tested for many different operating conditions involving different types of error. Tests are performed using data from the IEEE 24-bus and IEEE 118-bus systems. The performance of the method is evaluated and aspects such as computational efficiency, generalization capability and real-time implementation, among others, are also discussed.
20

[en] UNCERTAINTY OF MEASUREMENT IN ARTIFICIAL NEURAL NETWORKS APPLIED ON THE PREVENTATIVE MAINTENANCE OF TRANSFORMERS / [pt] INCERTEZA DE MEDIÇÃO EM REDES NEURAIS ARTIFICIAIS APLICADAS À MANUTENÇÃO PREDITIVA DE TRANSFORMADORES

CHRISTIANE SAMPAIO DE ALMEIDA GUSMAN 30 March 2012 (has links)
[pt] Diversas pesquisas sobre monitoramento e diagnóstico de equipamentos do sistema elétrico foram iniciadas com o objetivo de elevar a garantia e confiabilidade no sistema. Autores, não somente no Brasil, desenvolveram pesquisas sobre o tema, dentre eles (Bengtson, 1996; Kovacevic & Dominelli, 2003; Freitas, 2000). O objetivo é garantir a confiabilidade dos equipamentos instalados e incrementar o desempenho aumentando a vida útil dos mesmos. Nesse contexto (Freitas, 2000; Cavaleiro, 2003; dentre outros) discorrem sobre o tema. As redes neurais artificiais são utilizadas como uma das possíveis ferramentas disponíveis para análise, diagnóstico e monitoramento de equipamentos. A inovação deste trabalho está em apresentar uma nova metodologia desenvolvida para analisar a propagação das incertezas de medição das variáveis de entrada em redes neurais artificiais aplicadas à Manutenção Preditiva de Transformadores. Com base nos conceitos da metrologia foram analisados não somente os dados de entrada como também a incerteza de medição associadas aos mesmos. O método desenvolvido permite que se estime a incerteza de medição das variáveis de saída, contribuindo para a avaliação da confiabilidade de modelagens baseadas em redes neurais. Também foi realizado um estudo de caso, no qual se avaliou a propagação das incertezas de medição em sete redes neurais destinadas a estimar a concentração dos gases (saídas das redes) dissolvidos no óleo de transformadores de potência, com base nas características físico-químicas do óleo (variáveis de entrada). A metodologia utilizada baseou-se na introdução de perturbações na entrada das redes analisadas e na consequente análise de como estas perturbações afetam a saída das redes, permitindo-se assim calcular os coeficientes de sensibilidade de cada entrada. Em seguida, combinando-se as incertezas de medição das variáveis de entrada (disponíveis nos certificados de calibração dos instrumentos utilizados nas respectivas medições), por meio dos coeficientes de sensibilidade, é possível estimar a incerteza de medição das variáveis de saída. / [en] Research about monitoring and diagnostics of electrical system equipment was initiated with the objective of upgrading the guarantee and trust of a system. Authors, not only in Brazil, have developed research about the subject, among them (Bengtson, 1996; Kovacevic & Dominelli, 2003; Freitas, 2000). The objective is to guarantee the confidence in the equipment installed and enhance the performance and increase the durability of the equipment. Within this context (Freitas, 2000; Cavaleiro, 2003; among others) talk about this subject. The artificial Neural Networks are used as one of the possible available tools for analysis, diagnostics and monitoring of equipment. The innovation of this paper is to present a new methodology developed to analyze the propagation of uncertainty measurement variables of input in artificial neural networks applied to predictive maintenance of transformers. Based on the concepts of metrology, not only the input data was analyzed but also the uncertainty measurements that were associated with the equipment. The method that was developed allows us to estimate the measurement of uncertainty of output variables, contributing to the evaluation of confidence of models based on neural networks. There was also a case study, in which the propagation of uncertainties of measurement were evaluated within seven designated neural networks to estimate the concentration of gases (output of the networks) dissolved in potency transformer oil, based on the physical-chemical characteristics of the oil (input variables). The methodology that was utilized was based on the introduction of perturbation at the input of the networks that were analyzed and the consequent analysis of how these perturbation affect the output of the networks, this way allowing the calculation of the coefficients of sensibility of each entry. Then we match the input variables of the uncertainty measurements (available on the calibration certificates of the instruments utilized on the respective measurements), through the coefficients of sensibility, it is possible to estimate the output variables of the uncertainty measurements.

Page generated in 0.0369 seconds