1 |
[en] EXTREME VALUE THEORY: VALUE AT RISK FOR VARIABLE-INCOME ASSETS / [pt] TEORIA DOS VALORES EXTREMOS: VALOR EM RISCO PARA ATIVOS DE RENDA VARIÁVELGUSTAVO LOURENÇO GOMES PIRES 26 June 2008 (has links)
[pt] A partir da década de 90, a metodologia de Valor em Risco
(VaR) se difundiu pelo mundo, tanto em instituições
financeiras quanto em não financeiras, como uma boa prática
de mensuração de riscos. Um dos fatos estilizados mais
pronunciados acerca das distribuições de retornos
financeiros diz respeito à presença de caudas pesadas. Isso
torna os modelos paramétricos tradicionais de
cálculo de Valor em Risco (VaR) inadequados para a estimação
de VaR de baixas probabilidades, dado que estes se baseiam
na hipótese de normalidade para as distribuições dos
retornos. Sendo assim, o objetivo do presente trabalho é
investigar o desempenho de modelos baseados na Teoria dos
Valores Extremos para o cálculo do VaR. Os resultados
indicam que os modelos baseados na Teoria dos Valores
Extremos são adequados para a modelagem das caudas, e
consequentemente para a estimação de Valor em Risco quando
os níveis de probabilidade de interesse são baixos. / [en] Since the 90 decade, the use of Value at Risk (VaR)
methodology has been disseminated among both financial and
non-financial institutions around the world, as a good
practice in terms of risks management. The existence of fat
tails is one of the striking stylized facts of financial
returns distributions. This fact makes the use of
traditional parametric models for Value at Risk (VaR)
estimation unsuitable for the estimation of low probability
events. This is because traditional models are based on the
conditional normality assumption for financial returns
distributions. The main purpose of this dissertation is to
investigate the performance of VaR models based on Extreme
Value Theory. The results indicates that Extreme Value
Theory based models are suitable for low probability
VaR estimation.
|
2 |
[en] ESSAYS ON THE RISK ASSOCIATED TO FORECASTING ELECTRICITY PRICES AND ON MODELING THE DEMAND OF ENERGY FROM AN ELECTRICITY DISTRIBUTOR / [pt] ENSAIOS SOBRE O RISCO DE PREVISÃO DE PREÇOS DE ENERGIA ELÉTRICA E MODELAGEM DE CARGA DEMANDADA A UMA DISTRIBUIDORA DE ELETRICIDADEMARIO DOMINGUES DE PAULA SIMOES 31 July 2018 (has links)
[pt] A presente tese trata da avaliação do risco associado à incerteza presente na previsão dos preços de energia elétrica, bem como os aspectos de incerteza associados à previsão de demanda da carga de energia elétrica exigida de uma distribuidora de eletricidade. O primeiro trabalho trata do risco associado à previsão dos preços da energia elétrica, partindo do conhecido fato de que os vários modelos de previsão destes preços são sabidamente imprecisos; assim sendo, qual deve ser o risco incorrido ao se utilizar determinada técnica de modelagem, considerando-se que provavelmente estaremos fazendo uma previsão errônea. A abordagem utilizada é a modelagem dos erros de previsão com a Teoria de Valores Extremos, que se mostra bastante segura para modelagens dos quantis extremos da distribuição dos resíduos, desde 98 porcento até acima de 99,5 porcento, para diferentes frequências de amostragem dos dados. No capítulo seguinte, é feita uma avaliação da carga elétrica demandada a uma distribuidora, primeiramente considerando a abordagem utilizando modelos do tipo ARMA e ARMAX, buscando avaliar sua eficiência preditiva. Estes modelos são sabidamente apropriados para previsões no curto prazo, e mostramos através de simulações de Monte Carlo, que sua extensão para previsões de longo prazo torna inócua a busca de sofisticação através do trabalho de incorporação de variáveis exógenas. O motivo é que dado que o erro incorrido em quaisquer destas previsões mais longas com tais modelos é tão grande, ainda que sejam
modelos mais ou menos sofisticados, com variáveis exógenas ou não, um modelo simples produzirá o mesmo efeito do que aquele de maior sofisticação, em termos de confiança na previsão média obtida. Finalmente, o último trabalho aborda o tema de possíveis não linearidades no processo de geração de dados da carga elétrica demandada de uma distribuidora, admitindo não ser este um processo apenas linear. Para tal são usados modelos não lineares auto-regressivos de mudança de regimes, que se mostram vantajosos por serem inerentemente resistentes a possíveis quebras estruturais na série de carga utilizada, além de serem particularmente apropriados para modelar assimetrias no processo gerador de dados. Mostramos que mesmo modelos do tipo TAR simples, com apenas dois regimes e auto excitados, isto é, não incorporando quaisquer variáveis exógenas, podem ser mais apropriados do que modelos lineares auto-regressivos, demonstrando melhor capacidade de previsão fora-da-amostra. Ao mesmo tempo tais modelos tem relativa facilidade de cálculo, não exigindo sofisticados recursos computacionais. / [en] This present thesis discusses the risk associated to the uncertainty that is present in the process of forecasting electricity prices, as well as the aspects of uncertainty in the forecast of electrical energy loads required from an electricity distributor. The first essay deals with the risk inherent to the forecast of electricity prices, bearing in mind that the various existing models are notoriously imprecise. Therefore, we attempt to determine what the forecast risk is, given that a certain forecasting technique is used and that it will probably inaccurate. The approach used is through the modeling of forecast residues with the Extreme Value Theory, which proves itself to be satisfactorily accurate for the modeling of the distribution of residues at such extreme quantiles as from 98 per cent up to over 99,5 per cent, for different data sampling frequencies. The following next chapter shows the evaluation of the electricity load required from a distributor, first by using such models as ARMA and ARMAX, trying to evaluate their predictive efficiency. These models are known to be appropriate for short term predictions, and we show by means of Monte Carlo simulations that their extended use for long term forecasts will render useless any attempt to sophisticate such models by means of incorporating exogenous variables. This is due to the fact that since the error from such longer forecasts will be so large one way or the other, with exogenous variables or not, a simpler model will be as useful as any in terms of the error in the mean prediction. Finally, the last work discusses the possibility of nonlinear effects being present in the data generating process of electrical load demanded from an energy distributor, admitting this process being just linear. To accomplish this task, we use nonlinear auto-regressive regime switching models, which are shown to be inherently resistant to possible structural breaks in the load series data used, at the same time that they are particularly appropriated to modeling asymmetries in the data generating process. We show that even relatively simple self-excited TAR models with only two regimes, that is, not resorting to any exogenous variables, can be more appropriate than linear auto-regressive models, sporting better out-of-sample forecast results. At the same time, such models are relatively simple to calculate, not requiring any sophisticated computational means.
|
3 |
[en] ANALYSIS OF EXTREME VALUES THEORY AND MONTE CARLO SIMULATION FOR THE CALCULATION OF VALUE-AT-RISK IN STOCK PORTFOLIOS / [pt] ANÁLISE DA TEORIA DOS VALORES EXTREMOS E DA SIMULAÇÃO DE MONTE CARLO PARA O CÁLCULO DO VALUE-AT-RISK EM CARTEIRAS DE INVESTIMENTOS DE ATIVOS DE RENDA VARIÁVELGUSTAVO JARDIM DE MORAIS 16 July 2018 (has links)
[pt] Após as recentes crises financeiras que se abateram sobre os mercados financeiros de todo o mundo, com mais propriedade a de 2008/2009, mas ainda a crise no Leste Europeu em Julho/2007, a moratória Russa em Outubro/1998, e, no âmbito nacional, a mudança no regime cambial brasileiro, em Janeiro/1999, as instituições financeiras incorreram em grandes perdas em cada um desses eventos e uma das principais questões levantadas acerca dos modelos financeiros diziam respeito ao gerenciamento de risco. Os diversos métodos de cálculo do Value-atrisk, bem como as simulações e cenários traçados por analistas não puderam prever sua magnitude nem tampouco evitar que a crise se agravasse. Em função disso, proponho-me à questão de estudar os sistemas de gerenciamento de risco financeiro, na medida em que este pode e deve ser aprimorado, sob pena de catástrofes financeiras ainda maiores. Embora seu conteúdo se mostre tão vasto na literatura, as metodologias para cálculo de valor em risco não são exatas e livres de falhas. Nesse contexto, coloca-se necessário o desenvolvimento e aprimoramento de ferramentas de gestão de risco que sejam capazes de auxiliar na melhor alocação dos recursos disponíveis, avaliando o nível de risco à que um investimento está exposto e sua compatibilidade com seu retorno esperado. / [en] After recent financial crisis that have hit financial markets all around the world, with more property on 2008/2009 periods, the Eastern Europe crisis in 2007, the Russian moratorium on October/1998, and with Brazilian national exchange rate regime change on January/1999, financial institutions have incurred
in large losses on each of these events and one of the main question raised about the financial models related to risk management. The Value-at-Risk management and its many forms to calculate it, as well as the simulations and scenarios predicted by analysts could not predict its magnitude or prevent crisis worsened. As a result, I intent to study the question of financial systems management, in order to improve the existing methods, under the threat that even bigger financial disasters are shall overcome. Although it s content is vast on scientific literature, the Value-at-Risk calculate is not exact and free of flaws. In this context, there is need for the development and improvement of risk management tools that are able to assist in a better asset equities allocation of resources, equalizing the risk level of an investment and it s return.
|
Page generated in 0.028 seconds