• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identidades e polinômios centrais para álgebras de matrizes. / Identities and central polynomials for matrix algebras.

BERNARDO, Leomaques Francisco Silva. 23 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-23T14:58:20Z No. of bitstreams: 1 LEOMAQUES FRANCISCO SILVA BERNARDO - DISSERTAÇÃO PPGMAT 2009..pdf: 656966 bytes, checksum: 9ca0422e8cc572aa2c43d542260ef401 (MD5) / Made available in DSpace on 2018-07-23T14:58:20Z (GMT). No. of bitstreams: 1 LEOMAQUES FRANCISCO SILVA BERNARDO - DISSERTAÇÃO PPGMAT 2009..pdf: 656966 bytes, checksum: 9ca0422e8cc572aa2c43d542260ef401 (MD5) Previous issue date: 2009-06 / Capes / Neste trabalho apresentamos um estudo sobre identidades e polinômios centrais para a álgebra das matrizes. Mais precisamente, apresentamos a descrição das identidades e polinômios centrais Zn-graduados e Z-graduados para a álgebra Mn(K) (matizes n x n sobre um corpo K), quando característica de K é zero. Depois, apresentamos a descrição dos polinômios centrais ordinários para a álgebra M2(K) (matrizes 2 x 2 sobre K), também para um corpo de característica zero. Finalmente, apresentamos duas construções clássicas de polinômios centrais para Mn(K), que surgiram como resposta a um problema sugerido por Kaplansky em 1956 sobre a existência de polinômios não triviais para esta álgebra. / In this work we study polynomial identities and central polynomials for matrix algebras. More precisely, we present the description of the identities and Zn-graded and Z-graded central polynomials for the algebra Mn(K) (the n x n matrices over the field K) when the characteristic of K is zero. Afterwards we give the description or the ordinary (nongraded) central polynomials for the algebra m2(K), the 2 x 2 matrices over K, assuming the field of characteristic zero. Finally, we present two classical constructions of central polynomials for Mn(K). These appeared as an answer to a problem posed by Kaplansky in 1956 about the existence of nontrivial central polynomials for that algebra.
2

Identidades polinomiais graduadas para álgebras de matrizes. / Graded polynomial identities for matrix algebras.

ALVES, Sirlene Trajano. 05 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-05T13:16:57Z No. of bitstreams: 1 SIRLENE TRAJANO ALVES - DISSERTAÇÃO PPGMAT 2012..pdf: 543242 bytes, checksum: 8ace2f30dc5a59df9bafcf55b8e7147b (MD5) / Made available in DSpace on 2018-08-05T13:16:57Z (GMT). No. of bitstreams: 1 SIRLENE TRAJANO ALVES - DISSERTAÇÃO PPGMAT 2012..pdf: 543242 bytes, checksum: 8ace2f30dc5a59df9bafcf55b8e7147b (MD5) Previous issue date: 2012-03 / O tema central desta dissertação é a descrição das identidades polinomiais graduadas da álgebra Mn(K). Métodos diferentes são empregados conforme a característica do corpo: se Char K = 0, à descrição das identidades graduadas se reduz a descrição das identidades multilineares, o que foi feito no Capítulo 2, onde são descritas as identidade de Mn(K) com uma classe ampla de graduações elementares; se Char K =p>0 e K é in nito, a descrição das identidades graduadas é reduzida à descrição das identidades multi-homogêneas, que torna o problema mais difícil, e técnicas como a construção de álgebras genéricas são necessárias. No Capítulo 3 são descritas as identidades Z e Zn-graduadas de Mn(K) para um corpo in nito K. / The main theme of this dissertation is the description of the graded polynomial identities of the algebra Mn(K). Diferent methods are used depending on the characteristic of the field: if Char K = 0, the description of the graded identities is reduced to the description of the multilinear graded identities, what was done in Chapter 2, where the identities of Mn(K) are described for a wide class of elementary gradings; if Char K =p>0 and K is in nite, the description of the graded identities is reduced to the study of the multi-homogeneous identities, wich makes it harder, and techniques such as the construction of generic algebras are necessary. In Chapter 3 the Z and Zn-graded identities of Mn(K) are described for an infinite field K
3

Base para as identidades polinomiais das matizes triangulares em blocos com Z2-graduação. / Base for the polynomial identities of triangular shades in blocks with Z2-graduation

NASCIMENTO JÚNIOR, Rivaldo do. 23 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-23T14:23:04Z No. of bitstreams: 1 RIVALDO DO NASCIMENTO JÚNIOR - DISSERTAÇÃO PPGMAT 2009..pdf: 371424 bytes, checksum: 6e808f19bfcee3712a8cc10f221c042b (MD5) / Made available in DSpace on 2018-07-23T14:23:04Z (GMT). No. of bitstreams: 1 RIVALDO DO NASCIMENTO JÚNIOR - DISSERTAÇÃO PPGMAT 2009..pdf: 371424 bytes, checksum: 6e808f19bfcee3712a8cc10f221c042b (MD5) Previous issue date: 2009-04 / Neste trabalho apresentamos um modelo para a superálgebra das matrizes triangulares superiores e mostraremos como obter o produto de dois T-ideais como núcleo de um homomorfismo de álgebras. em seguida, mostraremos como obter as identidades polinomiais para a álgebra das matrizes triangulares em blocos com Z2-graduação a partir das identidades ordinárias das álgebras de sua diagonal principal. / In this work we present a general model for the superalgebra of upper triangular matrices and show how to obtain the product of two T-ideals as the kernel of a homomorphism between two algebras. Next, we show how to obtain the polynomial identities for algebra of the block-triangular matrices with Z2-grading from the ordinary identities of the algebras of its main diagonal.

Page generated in 0.0833 seconds