• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Formulation et modélisation des vibrations par éléments finis de type solide-coque : application aux structures sandwichs viscoélastiques et piézoélectriques / Formulation and modeling of vibrations using solid-shell finite elements : application to viscoelastic and piezoelectric sandwich structures

Kpeky, Fessal 15 February 2016 (has links)
Cette thèse s’intéresse au développement d’éléments finis solide–coques dédiés à la modélisation de structures multicouches sollicitées en vibrations. En effet, la plupart des modèles multicouches dans la littérature présentent des limitations dans certaines configurations géométriques et matérielles. Face à ce constat et dans un souci de proposer un outil moins coûteux en temps de calcul, nous avons proposé une approche basée sur le concept solide–coques. Il s’agit d’éléments finis tridimensionnels dont le comportement a été amélioré par l’Assumed Strain Method. Dans un premier temps, nous avons formulé le problème de vibrations de structures sandwichs à cœur viscoélastique. La dépendance en fréquence a ainsi été prise en compte en utilisant une loi constitutive complexe. Pour résoudre le problème discrétisé, la Méthode Asymptotique Numérique, couplée à l’homotopie, et utilisant l’approche DIAMANT, a été adoptée pour les excellents résultats qu’elle offre par rapport aux autres méthodes. Des tests ont permis de valider les modèles proposés et de montrer l’avantage par rapport aux éléments ayant la même cinématique. Poursuivant nos travaux, et dans un souci d’augmenter l’amortissement, nous nous sommes orientés vers un contrôle actif des vibrations. Pour ce faire, deux éléments finis piézoélectriques ont été formulés. Il s’agit des éléments SHB8PSE et SHB20E qui sont des extensions des éléments finis SHB8PS et SHB20, respectivement. Le couplage électromécanique a consisté en l’ajout d’un degré de liberté à chacun des nœuds des dits éléments. Quelques exemples en statique et en vibrations menés sur des structures multicouches allant de simples poutres aux structures présentant des non-linéarités géométriques ont permis de valider les éléments solide–coques proposés. Pour finir, une synthèse des acquis des chapitres 2 et 3 a permis de proposer une modélisation de structures multicouches comprenant des couches élastiques, viscoélastiques et piézoélectriques. À l’amortissement passif provenant du pouvoir amortissant des matériaux viscoélastiques, on ajoute un contrôle actif qui découle du courant électrique généré au cours de la déformation des couches piézoélectriques. Ainsi, un filtre a été installé entre les capteurs et actionneurs. Ce filtre permet d’amplifier ou d’atténuer le potentiel électrique généré dans le but de réduire les amplitudes de vibrations. Pour résoudre le problème résultant nous avons étendu le solveur utilisé au chapitre 2. Pour valider les modèles proposés, des tests de contrôle actif–passif ont été menés sur des structures plaques multicouches. Enfin, quelques lois de contrôle découlant de filtres ont permis de montrer comment cette procédure permet de réduire ou même d’éviter l’amplification des vibrations / This thesis deals with the development of solid–shell finite elements for vibration modeling of multilayer structures. Indeed, most of multilayer models in the literature show some limitations in certain geometric and material configurations. Considering these restrictions and in order to develop a more efficient calculation tool, we proposed an approach based on the solid–shell concept. This consists of three-dimensional finite elements enhanced through the Assumed Strain Method. First of all, we have formulated the problem of vibrations of sandwich structures with viscoelastic core. The frequency dependence has been taken into account by using a complex constitutive law. To solve the discretized problem, the Asymptotic Numerical Method, coupled with the homotopy technique and the DIAMANT toolbox approach, was adopted due to the excellent results it provides compared to other methods. Benchmark tests have validated the models and highlighted their advantages over existing elements having the same kinematics. In order to increase damping properties, we directed our attention towards an active vibration control. For this purpose, two piezoelectric finite elements have been developed. These finite elements SHB8PSE and SHB20E are extensions, of the elements SHB8PS and SHB20, respectively. The electromechanical coupling consisted in adding an electrical degree of freedom to each node of these elements. A variety of test problems both in static and vibration analysis conducted on multilayer structures ranging from simple beams to structures involving geometric nonlinearities allowed validating the proposed solid–shell elements. Finally, combining the achievements made in chapters 2 and 3, we proposed a modeling approach for multilayer structures composed of elastic, viscoelastic and piezoelectric layers. Active control is introduced using the piezoelectric properties in order to improve the reduction in vibration amplitudes. Thus, a filter has been mounted between the sensors and actuators. This filter allows amplifying or attenuating the generated electric potential in order to reduce the vibration amplitudes. To solve the resulting problem, we extended the resolution method used in chapter 2. To validate the proposed models, active–passive control tests have been conducted on multilayer plate structures. Finally, some control laws, associated with filters, have shown how this procedure can allow reducing or even avoiding amplification of vibrations
2

Contributions à la prédiction d'instabilités de type structure et matériau : modélisation de critères et formulation d'éléments finis adaptés à la simulation des structures minces

Abed-Meraim, Farid 07 December 2009 (has links) (PDF)
Les travaux de recherche présentés dans cette HDR sont répartis en trois thématiques complémentaires. La première concerne la modélisation des instabilités locales dans les matériaux métalliques (localisation, striction ...). Il s'agit de développer des outils théoriques et numériques de prédiction de ces phénomènes et leur validation au travers de courbes limites de formage pour des aciers ferritiques ou dual-phase. Deux approches complémentaires ont été adoptées : la première est micromécanique se basant sur la plasticité cristalline couplée à des techniques de transition d'échelles, tandis que la seconde est phénoménologique utilisant des modèles de comportement avancés que nous avons couplé à de l'endommagement. Le critère de bifurcation de Rice, qui est relié à la perte d'ellipticité des équations gouvernant le problème aux limites, a été particulièrement analysé au travers de ces deux approches. L'influence sur l'apparition d'une localisation de plusieurs paramètres matériau ou liés à la microstructure ainsi que l'effet de certains mécanismes déstabilisants ont été analysés. Il est mis en évidence, notamment, le rôle tout à fait essentiel de la formation de points de vertex aux points courants de la surface de plasticité dans la détection d'une localisation de la déformation plastique en bande de cisaillement. Le deuxième axe de recherche est relatif aux instabilités de type structure (flambage, plissement ...). Ces phénomènes se manifestent le plus souvent en présence de structures minces ou relativement élancées. Dans ce cadre, nous proposons une approche basée sur l'étude de stabilité des évolutions quasi statiques. Pour des matériaux sensibles à la vitesse de déformation, l'absence de bifurcation ainsi que d'états d'équilibre nous amènent naturellement à poser le problème comme celui de la stabilité de trajectoires quasi statiques. Pour les matériaux élasto-plastiques, cette approche est justifiée par le fait que bien souvent nous sommes en présence d'une évolution quasi statique, pour un trajet de chargement donné, même si chaque point de cette évolution représente un état d'équilibre. Le critère de stabilité unifié que nous proposons est donné par la positivité de la seconde variation de l'énergie totale et est valable pour des solides visco-élastiques, visco-plastiques ou élasto-plastiques. Plus récemment, nous avons étendu ce critère à des modèles à gradients. Enfin, la comparaison de ce critère avec les résultats existants relatifs au flambage plastique nous a permis de rediscuter le critère de non-bifurcation de Hill en relation avec le choix du modèle de plasticité approprié. Il est mis en évidence, de nouveau, le rôle important joué par le développement de points de vertex sur la surface de plasticité lors de la prédiction du flambage avec la théorie du module tangent élasto-plastique. Le troisième axe de recherche concerne le développement d'éléments finis de type coques volumiques. L'idée de ce nouveau concept est de combiner les avantages des éléments coques et 3D pour formuler des éléments particulièrement adaptés à la simulation des structures minces. Ces nouveaux éléments de coques volumiques ont l'avantage de prendre en compte la flexion suivant une direction choisie tout en conservant la formulation classique des éléments volumiques. Ils permettent ainsi de modéliser des structures comportant des parties minces et des zones épaisses, sans les difficultés habituelles de raccord de maillages contenant des éléments coques et 3D. Leur utilisation en emboutissage est très prometteuse, en particulier pour des problèmes où les effets dans l'épaisseur sont d'importance majeure. Étant sous-intégrés, pour améliorer leurs performances, les modes de hourglass générés sont alors efficacement stabilisés par des techniques récentes. Les modes de verrouillages (membrane et cisaillement transverse) sont éliminés par des techniques de projection pouvant se mettre sous le formalisme " Assumed Strain Method ".

Page generated in 0.0791 seconds