• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 57
  • 13
  • Tagged with
  • 161
  • 161
  • 161
  • 161
  • 71
  • 70
  • 69
  • 68
  • 34
  • 32
  • 31
  • 27
  • 26
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Stabilité d’ondes périodiques, schéma numérique pour le chimiotactisme / Stability of periodic waves, numerical scheme for chemiotaxis

Le Blanc, Valérie 24 June 2010 (has links)
Cette thèse est articulée autour de deux facettes de l’étude des équations auxdérivées partielles. Dans une première partie, on étudie la stabilité des solutionspériodiques pour des lois de conservation. On démontre d’abord la stabilité asymptotiquedans L1 des solutions périodiques de lois de conservation scalaires et inhomogènes.On montre ensuite un résultat de stabilité structurelle des roll-waves. Plusprécisément, on montre que les solutions périodiques d’un système hyperbolique sansviscosité sont limites des solutions du problème avec viscosité, quand le terme deviscosité tend vers 0. Dans une deuxième partie, on s’intéresse à un système d’équationsaux dérivées partielles issu de la biologie : le modèle de Patlak-Keller-Segelen dimension 2 ; il décrit les phénomènes de chimiotactisme. Pour ce modèle, onconstruit un schéma de type volume fini, ce qui permet d’approcher la solution touten gardant certaines propriétés du système : positivité, conservation de la masse,estimation d’énergie. / This thesis is organized around two aspects of the study of partial differentialequations. In a first part, we study the stability of periodic solutions for conservationlaws. First, we prove asymptotic L1-stability of periodic solutions of scalarinhomogeneous conservation laws. Then, we show a result on structural stability ofroll-waves. More precisely, we prove that periodic solutions of a hyperbolic systemwithout viscosity are the limits of the solutions of the problem with viscosity, as theviscous term tends to 0. In a second part, we study a system of partial differentialequations derived from biology: the model of Patlak-Keller-Segel in dimension 2, describingthe phenomena of chemotaxis. For this model, we construct a finite-volumescheme, which approaches the solution while keeping some properties of the system:positivity, conservation of mass, energy estimate.
42

Homogénéisation de l'effet Hall et de la magnétorésistance dans des composites / Homogenization of the Hall effect and the magneto-resistance in composites

Pater, Laurent 18 June 2013 (has links)
Les conducteurs composites sont constitués d'hétérogénéités microscopiques mais apparaissent comme homogènes à l'échelle macroscopique. La description de leur comportement nécessite l'homogénéisation des équations de conduction régissant chacune de leurs phases. Cette thèse s'intéresse à certaines lois effectives pour les conducteurs composites en présence d'un champ magnétique constant. Dans le premier chapitre, on rappelle quelques résultats d'électrophysique (effet Hall, magnétorésistance) et de la théorie de l'homogénéisation (H-convergence) ainsi que son extension à des problèmes à forte conductivité. Dans le chapitre deux, on étudie l'effet Hall dans des composites bidimensionnels à deux phases très contrastées et on compare le résultat d'homogénéisation à celui obtenu avec une structure fibrée renforcée. Le troisième chapitre généralise ce cas particulier et étend la loi comportementale obtenue à des matériaux cylindriques non périodiques sans hypothèse géométrique sur leur section. Les chapitres deux et trois soulignent des différences importantes entre la dimension deux et la dimension trois au niveau des problèmes de conduction à fort contraste. Un quatrième chapitre est consacré à l'étude de la magnétorésistance en dimension trois et met en avant une forte interaction entre la direction du champ magnétique et l'énergie dissipée dans le matériau complétant ainsi un résultat antérieur en dimension deux. / A composite conductor is composed of microscopic heterogeneities but appears as a homogeneous medium on the macroscopic scale. Describing the behavior of such materials requires the homogenization of the conduction equations which rule each of their phases. In this PhD thesis, we study a few effective laws for composite conductors in the presence of a constant magnetic field. In the first chapter, we recall a few results on electro-physics (Hall effect, magneto-resistance) and on the homogenization theory (H-convergence) as well as its extension to high-conductivity problems. In the second chapter, we study the Hall effect in two-dimensional high-contrast two-phase composites and we compare the result to the one obtained with a three-dimensional fibre-reinforced structure. The third chapter generalizes this particular case and extends the perturbation law to non-periodic cylindrical composites without any geometrical assumption on their cross section. The chapters two and three underline the gap between dimension two and dimension three in high-conductivity problems. The fourth chapter analyses the magneto-resistance in a three-dimensional composite medium and outlines a strong interaction between the direction of the magnetic field and the dissipated energy in the material; this completes a previous work on the two-dimensional case.
43

Méthodes de moyennisation stroboscopique appliquées aux équations aux dérivées partielles hautement oscillantes / Stroboscopic averaging methods for highly oscillatory partial differential equations

Leboucher, Guillaume 08 December 2015 (has links)
Cette thèse présente des travaux originaux dans le domaine des méthodes de moyennisation d'ordre élevé. On s'intéresse notamment à des procédures de moyennisation dite stroboscopique ou quasi-stroboscopique dans des espaces de Banach ou de Hilbert. Ces procédures sont ensuite appliquées à des exemples concrets: des équations d'évolutions hautement oscillantes. Plus précisément, on montre dans un premier temps un résultat de moyennisation stroboscopique dans un espace de Banach où l'on obtient des estimations d'erreurs exponentielles. Ce théorème est ensuite appliqué sur deux équations des ondes semi-linéaire hautement oscillantes. On montre également que la Stroboscopic Averaging Method s'applique à une équation des ondes semi-linéaire avec conditions de Dirichlet. On trouve enfin numériquement, une dynamique intéressante de l'équation des ondes semi-linéaire mise en lumière par la procédure de moyennisation. Dans un second temps, on présente un théorème de moyennisation quasi-stroboscopique dans un espace de Hilbert quelconque avec des estimations d'erreurs exponentielles. Ce théorème est alors appliqué de façon indirecte à une équation de Schrödinger semi-linéaire oscillante. Cette équation est d'abord projeté dans un espace de dimension finie pour qu'on puisse lui appliquer le théorème de moyennisation quasi-stroboscopique. On écrit alors un résultat de moyennisation quasi-stroboscopique pour l'équation de Schrödinger semi-linéaire avec des estimations d'erreur polynomiales. / This thesis presents some original work in the field of high order averaging procedure. In particular, we are interested in stroboscopic and quasi-stroboscopic averaging procedure in abstract Banach or Hilbert spaces. This procedures is applied to concrete examples: some highly oscillatory evolution equations. More precisely, we first show a theorem of stroboscopic averaging in a Banach space where we obtain exponential error estimates. This theorem is then applied on two semi-linear and highly oscillatory wave equations. We also put in evidence that the {\it Stroboscopic Averaging Method} works fine with a semi-linear wave equation with Dirichlet conditions. Finally, the averaging procedure puts in evidence, numerically, an interesting dynamics regarding the semi-linear wave equation with Dirichlet conditions. In a second part, we present a quasi-stroboscopic averaging theorem in a Hilbert space with exponential error estimates. This theorem is applied on a semi-linear Schrödinger equation. This equation has first, to be project in a finite dimensional space in order to fit in the hypotheses of the theorem. We then write a quasi-stroboscopic averaging theorem for a semi-linear Schrödinger equation with polynomial error estimates.
44

développement d'outils d'optimisation pour freefem++ / Optimization tools development for FreeFemm++

Auliac, Sylvain 11 March 2014 (has links)
Cette thèse est consacrée au développement d'outils pour FreeFem++ destinés à faciliter la résolution des problèmes d'optimisation. Ce travail se compose de deux parties principales. La première consiste en la programmation, la validation et l'exploitation d'interfaces permettant l¿utilisation de routines d'optimisation directement dans le logiciel. La seconde comprend le développement de solutions pour le calcul automatisé des dérivées, toujours au sein de FreeFem++, en exploitant les paradigmes de la différentiation automatique. FreeFem++ est un environnement de développement intégré dédié à la résolution numérique d¿équations aux dérivées partielles en dimension 2 et 3. Son langage ergonomique permet à l'utilisateur d'exploiter aisément ses nombreux outils de création de maillages, de résolution de systèmes linéaires, ainsi que ses bibliothèques d'éléments finis, etc... Nous introduisons les nouvelles routines d'optimisation désormais accessibles depuis la bibliothèque de modules du logiciel. En particulier, le logiciel libre d'optimisation sous contraintes IPOPT, qui implémente une méthode de points intérieurs très robuste pour l¿optimisation en grande dimension. Nous appliquons avec succès ces algorithmes à une série de problèmes concrets parmi lesquels la résolution numérique de problèmes de sur- faces minimales, la simulation de condensats de Bose-Einstein, ou encore un problème de positionnement inverse en mécanique des fluides. Une version prototypique de FreeFem++ contenant les outils de différentiation automatique est présentée, après avoir exposé les principes fondamentaux de cette méthode de calcul de dérivées pour le calcul scientifique. / The goal of this Ph.D. thesis was the development of tools for the FreeFem++ software in order to make optimization problems easier to deal with. This has been accomplished following two main directions. Firstly, a set of optimization softwares is interfaced and validated before making use of them. Then, we analyse the field of automatic differentiation as a potential mean of simplification for the users. FreeFem++ is an integrated development environment dedicated to numerically solving partial differential equations. Its high level language allows the user for a comfortable experience while using its mesh generation capabilities, linear system solvers, as well as finite elements capabilities. We describe the newly available optimization features, with a certain emphasis on the open source software IPOPT, which implements a state of the art interior points method for large scale optimization. These optimization tools are then used in a set of quite successful applications, among which minimal surfaces, Bose-Einstein condensate simulation, and an inverse positioning problem in the context of computational fluid dynamics. Finally, after an introduction to the techniques of algorithmic differentiation, we also present an unstable prototype version of FreeFem++ including automatic differentiation features.
45

Effets non-linéaires et effets quantiques en gravité analogue / Nonlinear and quantum effects in analogue gravity

Michel, Florent 23 June 2017 (has links)
Cette thèse concerne l'étude des propriétés de champs scalaires classiques et quantiques en présence d'un environnement inhomogène et/ou dépendant du temps. Nous nous concentrerons sur des modèles pouvant être décrits, fondamentalement ou de manière effective, par un espace-temps courbe contenant un horizon des événements. Nous verrons en particulier comment une correspondance mathématique, provenant d'une symétrie de Lorentz effective à basse énergie, permet de relier les comportements des ondes dans un cadre non relativiste à la physique des trous noirs, quelles en sont les limites et dans quelle mesure les résultats ainsi obtenus sont og analogues fg à leurs pendants gravitationnels. Après un premier chapitre d'introduction rappelant quelques bases de relativité générale puis une dérivation de la radiation de Hawking et de la correspondance avec des systèmes non relativistes, je présenterai le détail de quatre travaux effectués durant ma thèse. Les autres articles écrits dans ce cadre sont résumés dans le dernier chapitre, précédant une conclusion générale. Mes collaborateurs et moi nous sommes concentrés sur trois aspects du comportement des champs près de l'analogue d'un horizon des événements dans des modèles avec une symétrie de Lorentz effective à basse énergie. Le premier concerne les effets non linéaires, cruciaux pour comprendre l'évolution de la radiation de Hawking ainsi que pour les réalisations expérimentales mais auparavant peu étudiés. Nous montrerons comment ceux-ci déterminent les possibles comportements aux temps longs pour des systèmes stables ou instables. Le second aspect a trait aux effets linéaires et quantiques, en particulier la radiation de Hawking elle-même, son devenir lorsque l'horizon est continûment effacé, ainsi que les diverses instabilités à même de survenir dans différents modèles. Enfin, nous avons participé à l'élaboration, à l'analyse et à l'étude d’expériences dites de og gravité analogue fg dans des condensats de Bose-Einstein et des systèmes hydrodynamiques ou acoustiques, dont je rapporte les principaux résultats. / The present thesis deals with some properties of classical and quantum scalar fields in an inhomogeneous and/or time-dependent background, focusing on models where the latter can be described as a curved space-time with an event horizon. While naturally formulated in a gravitational context, such models extend to many physical systems with an effective Lorentz invariance at low energy. We shall see how this effective symmetry allows one to relate the behavior of perturbations in these systems to black-hole physics, what are its limitations, and in which sense results thus obtained are “analogous” to their general relativistic counterparts. The first chapter serves as a general introduction. A few notions from Einstein's theory of gravity are introduced and a derivation of Hawking radiation is sketched. The correspondence with low-energy systems is then explained through three important examples. The next four chapters each details one of the works completed during this thesis, updated and slightly reorganized to account for new developments which occurred after their publication. The other articles I contributed to are summarized in the last chapter, before the general conclusion. My collaborators and I focused on three aspects of the behavior of fields close to the (analogue) event horizon in models with an effective low-energy Lorentz symmetry. The first one concerns nonlinear effects, which had been given little attention in view of their crucial importance for understanding the evolution in time of Hawking radiation as well as for experimental realizations. We showed in particular how they determine the late-time behavior in stable and unstable configurations. The second aspect concerns linear and quantum effects. We studied the Hawking radiation itself in several models and what replaces it when continuously erasing the horizon. We also characterized and classified the different types of linear instabilities which can occur. Finally, we contributed to the design and analysis of “analogue gravity” experiments in Bose-Einstein condensates, hydrodynamic flows, and acoustic setups, of which I report the main results.
46

Positivity and qualitative properties of solutions of fourth-order elliptic equations / Positivité et propriétés qualitatives des solutions d'équations elliptiques du quatrième ordre

Romani, Giulio 10 October 2017 (has links)
Cette thèse concerne l'étude de certains problèmes elliptiques d'ordre 4 et, notamment, des propriétés qualitatives des solutions. Ces problèmes apparaissent dans de nombreux domaines, par exemple dans la théorie des plaques et dans la géométrie conforme, et, comparés à leurs homologues du deuxième ordre, ils présentent des difficultés intrinsèques, surtout liées à l'absence de principe de maximum. Premièrement on étudie la positivité des solutions dans le cas des conditions au bord de Steklov, qui sont intermédiaires entre les conditions de Dirichlet et de Navier. Elles apparaissent naturellement dans l'étude des minimiseurs de la fonctionnelle de Kirchhoff-Love, qui représente l'énergie d'une plaque encastrée soumise à l'action d'une force extérieure, en fonction d'un paramètre $\sigma$. On trouve des conditions suffisantes sur le domaine pour que les minimiseurs de la fonctionnelle soient positifs. De plus, pour ces domaines on étudie une version généralisée de la fonctionnelle. En utilisant des techniques variationnelles, on examine l'existence et la positivité des états fondamentaux, ainsi que leur comportement asymptotique pour les valeurs pertinentes de $\sigma$. Dans la deuxième partie de la thèse on établit des estimations uniformes a priori pour des problèmes semi linéaires du quatrième ordre dans $\mathbb R^4$, et donc avec des non linéarités exponentielles. On considère des conditions au bord soit de Dirichlet soit de Navier et on suppose que les non linéarités sont positives et sous-critiques. Nos arguments combinent des estimations uniformes près du bord et une analyse de blow-up. Enfin, en utilisant la théorie du degré, on obtient l'existence d'une solution. / This thesis concerns the study of fourth-order elliptic boundary value problems and, in particular, qualitative properties of solutions. Such problems arise in various fields, from plate theory to conformal geometry and, compared to their second-order counterparts, they present intrinsic difficulties, mainly due to the lack of the maximum principle. In the first part of the thesis, we study the positivity of solutions in case of Steklov boundary conditions, which are intermediate between Dirichlet and Navier boundary conditions. They naturally appear in the study of the minimizers of the Kirchhoff-Love functional, which represents the energy of a hinged thin and loaded plate in dependence of a parameter $\sigma$. We establish sufficient conditions on the domain to obtain the positivity of the minimizers of the functional. Then, for such domains, we study a generalized version of the functional. Using variational techniques, we investigate existence and positivity of the ground states, as well as their asymptotic behaviour for the relevant values of $\sigma$. In the second part of the thesis we establish uniform a-priori bounds for a class of fourth-order semi linear problems in $\mathbb R^4$, and thus with exponential non linearities. We considered both Dirichlet and Navier boundary conditions and we suppose our non linearities positive and subcritical. Our arguments combine uniform estimates near the boundary and a blow-up analysis. Finally, by means of the degree theory, we obtain the existence of a positive solution.
47

Probabilistic and deterministic analysis of the evolution : influence of a spatial structure and a mating preference. / Analyses probabilistes et déterministes pour l'évolution : influence d'une structure spatiale et d'une préférence sexuelle

Leman, Hélène 28 June 2016 (has links)
Cette thèse porte sur l'étude des dynamiques spatiales et évolutives d'une population à l'aide d'outils probabilistes et déterministes. Dans la première partie, nous cherchons à comprendre l'effet de l'hétérogénéité de l'environnement sur l'évolution des espèces. La population considérée est modélisée par un processus individu-centré avec interactions qui décrit les événements de naissances, morts, mutations et diffusions spatiales de chaque individu. Les taux des événements dépendent des caractéristiques des individus : traits phénotypes et positions spatiales. Dans un premier temps, nous étudions le système d'équations aux dérivées partielles qui décrit la dynamique spatiale et démographique d'une population composée de deux traits dans une limite grande population. Nous caractérisons précisément les conditions d'extinction et de survie en temps long de cette population. Dans un deuxième temps, nous étudions le modèle individuel initial sous deux asymptotiques : grande population et mutations rares de telle sorte que les échelles de temps démographiques et mutationnelles sont séparées. Ainsi, lorsqu'un mutant apparaît, la population résidente est à l'équilibre démographique. Nous cherchons alors à caractériser la probabilité de survie de la population issue de ce mutant. Puis, en étudiantle processus dans l'échelle des mutations, nous prouvons que le processus individu-centré converge vers un processus de sauts qui décrit les fixations successives des traits les plus avantagés ainsi que la répartition spatiale des populations portant ces traits. Nous généralisons ensuite le modèle pour introduire des interactions de type mutualiste entre deux espèces. Nous étudions ce modèle dans une limite de grande population. Nous donnons par ailleurs des résultats numériques et une analyse biologique détaillée des comportements obtenus autour de deux problématiques : la coévolution de niches spatiales et phénotypiques d'espèces en interaction mutualiste et les dynamiques d'invasions d'un espace homogène par des espèces mutualistes. Dans la deuxième partie de cette thèse, nous développons un modèle probabiliste pour étudier finement l'effet d'une préférence sexuelle sur la spéciation. La population est ici structurée sur deux patchs et les individus, caractérisés par un trait, sont écologiquement et démographiquement équivalents et se distinguent uniquement par leur préférence sexuelle: deux individus de même trait ont plus de chance de se reproduire que deux individus de traits distincts. Nous montrons qu'en l'absence de toute autre différence écologique, la préférence sexuelle mène à un isolement reproductif entre les deux patchs. / We study the spatial and evolutionary dynamics of a population by using probabilistic and deterministic tools. In the first part of this thesis, we are concerned with the influence of a heterogeneous environment on the evolution of species. The population is modeled by an individual-based process with some interactions and which describes the birth, the death, the mutation and the spatial diffusion of each individual. The rates of those events depend on the characteristics of the individuals : their phenotypic trait and their spatial location. First, we study the system of partial differential equations that describes the spatial and demographic dynamics of a population composed of two traits in a large population limit. We characterize precisely the conditions of extinction and long time survival for this population. Secondly, we study the initial individual-based model under two asymptotic: large population and rare mutations such as demographic and mutational timescales are separated. Thus, when a mutant appears, the resident population has reached its demographic balance. We characterize the survival probability of the population descended from this mutant. Then, by studyingthe process in the mutational scale, we prove that the microscopic process converges to a jump process which describes the successive fixations of the most advantaged traits and the spatial distribution of populations carrying these traits. We then extend the model to introduce mutualistic interactions between two species. We study this model in a limit of large population. We also give numerical results and a detailed biological behavior analysis around two issues: the co-evolution of phenotypic and spatial niches of mutualistic species and the invasion dynamics of a homogeneous space by these species. In the second part of this thesis, we develop a probabilistic model to study the effect of the sexual preference on the speciation. Here, the population is structured on two patches and the individuals, characterized by a trait, are ecologically and demographically similar and differ only in their sexual preferences: two individuals of the same trait are more likely to reproduce than two individuals of distinct traits. We show that in the absence of any other ecological differences, the sexual preferences lead to reproductive isolation between the two patches.
48

Analyse théorique et numérique des conditions de glissement pour les fluides et les solides par la méthode de pénalisation

Dione, Ibrahima 19 April 2018 (has links)
Nous nous intéressons aux équations classiques de Stokes et de l’élasticité linéaire stationnaires, posées dans un domaine [symbol] de frontière [symbol] courbe et régulière, associées à des conditions de glissement et de contact idéal, respectivement. L’approximation par éléments finis de tels problèmes est délicate en raison d’un paradoxe de type Babuška-Sapondžyan : les solutions dans des domaines polygonaux approchant le domaine à frontière courbe et régulière ne convergent pas vers la solution dans le domaine limite. L’objectif de cette thèse est d’explorer l’application de la méthode de pénalisation à ces conditions de glissement dans le but, notamment, de remédier à ce paradoxe. C’est une méthode classique et très répandue en pratique, car elle permet de travailler dans des espaces sans contraintes et d’éviter par exemple l’ajout de nouvelles inconnues comme dans la méthode des multiplicateurs de Lagrange. La première partie de cette thèse est consacrée à l’étude numérique en 2D de différents choix d’éléments finis et, surtout, de différents choix de l’approximation de la normale au bord du domaine. Avec la normale (discontinue) aux domaines polygonaux [symbol] engendrés avec les maillages de [symbol], les solutions par éléments finis ne semblent pas converger vers la solution exacte. En revanche, si on utilise des régularisations de la normale, des éléments finis isoparamétriques de degré 2 en vitesse (déplacement pour l’élasticité) ou une sous-intégration du terme de pénalisation, on observe une convergence, avec des taux optimaux dans certains cas. Dans une seconde partie, nous faisons une analyse théorique (en dimensions 2 et 3) de la convergence. Les estimations a priori obtenues permettent de dire que même avec la normale discontinue aux domaines polygonaux, l’approximation par éléments finis converge vers la solution exacte si le paramètre de pénalisation est choisi convenablement en fonction de la taille des éléments, démontrant ainsi que le paradoxe peut être évité avec la méthode de pénalisation. / We are interested in the classical stationary Stokes and linear elasticity equations posed in a bounded domain [symbol] with a curved and smooth boundary [symbol], associated with slip and ideal contact boundary conditions, respectively. The finite element approximation of such problems can present difficulties because of a Babuška-Sapondžyan’s like paradox: solutions in polygonal domains approaching the smooth domain do not converge to the solution in the limit domain. The objective of this thesis is to explore the application of the penalty method to these slip boundary conditions, in particular in order to overcome this paradox. The penalty method is a classic method widely used in practice because it allows to work in functional spaces without constraints and avoids adding new unknowns like with the Lagrange multiplier method. The first part of this thesis is devoted to the 2D numerical study of different finite elements choices and, most importantly, of different choices of the approximation of the normal vector to the boundary of the domain. With the (discontinuous) normal vector to polygonal domains [symbol] generated with the meshing of [symbol], the finite element solutions do not seem to converge to the exact solution. However, if we use a (continuous) regularization of the normal, isoparametric finite elements of degree 2 for the velocity (or the displacement for elasticity) or a reduced integration of the penalty term, convergence is obtained, with optimal rates in some cases. In a second part, we make a theoretical analysis (in dimensions 2 and 3) of the convergence. The a priori estimates obtained allow to say that even with the (discontinuous) normal vector to polygonal domains, the finite element approximation converges to the exact solution when the penalty parameter is selected appropriately in terms of the size of the elements, showing that the paradox can be circumvented with the penalty method.
49

Pollution agricole des ressources en eau : approches couplées hydrogéologique et économique / Groundwater pollution from agricultural activities : coupling hydrogeological and economical approaches

Comte, Eloïse 08 December 2017 (has links)
Ce travail s’inscrit dans un contexte de contrôle de la pollution des ressources en eau. On s’intéresse plus particulièrement à l’impact des engrais d’origine agricole sur la qualité de l’eau, en alliant modélisation économique et hydrogéologique. Pour cela, nous définissons d’une part un objectif économique spatio-temporel prenant en compte le compromis entre l’utilisation d’engrais et les coûts de dépollution. D’autre part, nous décrivons le transport du polluant dans le sous-sol (3D en espace) par un système non linéaire d’équations aux dérivées partielles couplées de type parabolique (réaction-convection-dispersion) et elliptique dans un domaine borné. Nous prouvons l’existence globale d’une solution au problème de contrôle optimal. L’unicité est quant à elle démontrée par analyse asymptotique pour le problème effectif tenant compte de la faible concentration d’engrais en sous-sol. Nous établissons les conditions nécessaires d’optimalité et le problème adjoint associé à notre modèle. Quelques exemples analytiques sont donnés et illustrés. Nous élargissons ces résultats au cadre de la théorie des jeux, où plusieurs joueurs interviennent, et prouvons notamment l’existence d’un équilibre de Nash. Enfin, ce travail est illustré par des résultats numériques (2D en espace), obtenus en couplant un schéma de type Éléments Finis Mixtes avec un algorithme de gradient conjugué non linéaire. / This work is devoted to water ressources pollution control. We especially focus on the impact of agricultural fertilizer on water quality, by combining economical and hydrogeological modeling. We define, on one hand, the spatio-temporal objective, taking into account the trade off between fertilizer use and the cleaning costs. On an other hand, we describe the pollutant transport in the underground (3D in space) by a nonlinear system coupling a parabolic partial differential equation (reaction-advection-dispersion) with an elliptic one in a bounded domain. We prove the global existence of the solution of the optimal control problem. The uniqueness is proved by asymptotic analysis for the effective problem taking into account the low concentration fertilizer. We define the optimal necessary conditions and the adjoint problem associated to the model. Some analytical results are provided and illustrated. We extend these results within the framework of game theory, where several players are involved, and we prove the existence of a Nash equilibrium. Finally, this work is illustrated by numerical results (2D in space), produced by coupling a Mixed Finite Element scheme with a nonlinear conjugate gradient algorithm.
50

Structures contrôlées pour les équations aux dérivées partielles / Controlled structures for partial differential equations

Furlan, Marco 26 June 2018 (has links)
Le projet de thèse comporte différentes directions possibles: a) Améliorer la compréhension des relations entre la théorie des structures de régularité développée par M. Hairer et la méthode des Distributions Paracontrolées développée par Gubinelli, Imkeller et Perkowski, et éventuellement fournir une synthèse des deux. C'est très spéculatif et, pour le moment, il n'y a pas de chemin clair vers cet objectif à long terme. b) Utiliser la théorie des Distributions Paracontrolées pour étudier différents types d'équations aux dérivés partiels: équations de transport et équations générales d'évolution hyperbolique, équations dispersives, systèmes de lois de conservation. Ces EDP ne sont pas dans le domaine des méthodes actuelles qui ont été développées principalement pour gérer les équations d'évolution semi-linéaire parabolique. c) Une fois qu'une théorie pour l'équation de transport perturbée par un signal irregulier a été établie, il sera possible de se dédier à l'étude des phénomènes de régularisation par le bruit qui, pour le moment, n'ont étés étudiés que dans le contexte des équations de transport perturbées par le mouvement brownien, en utilisant des outils standard d'analyse stochastique. d) Les techniques du Groupe de Renormalisation (GR) et les développements multi-échelles ont déjà été utilisés à la fois pour aborder les EDP et pour définir des champs quantiques euclidiens. La théorie des Distributions Paracontrolées peut être comprise comme une sorte d'analyse multi-échelle des fonctionnels non linéaires et il serait intéressant d'explorer l'interaction des techniques paradifférentielles avec des techniques plus standard, comme les "cluster expansions" et les méthodes liées au GR. / The thesis project has various possible directions: a) Improve the understanding of the relations between the theory of Regularity Structures developed by M.Hairer and the method of Paracontrolled Distributions developed by Gubinelli, Imkeller and Perkowski, and eventually to provide a synthesis. This is highly speculative and at the moment there are no clear path towards this long term goal. b) Use the theory of Paracontrolled Distributions to study different types of PDEs: transport equations and general hyperbolic evolution equation, dispersive equations, systems of conservation laws. These PDEs are not in the domain of the current methods which were developed mainly to handle parabolic semilinear evolution equations. c) Once a theory of transport equation driven by rough signals have been established it will become possible to tackle the phenomena of regularization by transport noise which for the moment has been studied only in the context of transport equations driven by Brownian motion, using standard tools of stochastic analysis. d) Renormalization group (RG) techniques and multi-scale expansions have already been used both to tackle PDE problems and to define Euclidean Quantum Field Theories. Paracontrolled Distributions theory can be understood as a kind of mul- tiscale analysis of non-linear functionals and it would be interesting to explore the interplay of paradifferential techniques with more standard techniques like cluster expansions and RG methods.

Page generated in 0.1548 seconds