• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de la stabilisation exponentielle et polynomiale de certains systèmes d'équations couplées par des contrôles indirects bornés ou non bornés / Study of the exponential and polynomial stability of some systems of coupled equations with indirect bounded or unbounded control

Najdi, Nadine 08 July 2016 (has links)
La thèse porte essentiellement sur la stabilisation indirecte de certains systèmes d’équations couplées moyennant un seul contrôle agissant localement à l’intérieur ou sur le bord du domaine. La nature du système ainsi couplé dépend du couplage des équations et du type de l’amortissement, et ceci donne divers résultats de stabilisation (exponentielle ou polynômiale) des systèmes étudiés. D’abord, dans le cas de la stabilisation d’un système de Bresse formé de trois équations d’ondes couplées, un amortissement local de type chaleur est appliqué à une seule équation. Par une méthode fréquentielle combinée avec une méthode de multiplicateurs par morceau la décroissance exponentielle de l’énergie du système est établie sous la condition d’égalité de vitesses de propagation des ondes. Dans le cas contraire, une décroissance polynomiale est assurée. Ensuite, un système de deux équations d’ondes couplées sous l’effet d’un seul amortissement frontière appliqué à une seule équation est considéré. Dans ce cas, la stabilité du système est influencée par la nature algébrique du terme de couplage ainsi que par la nature arithmétique du quotient de vitesses de propagation des ondes. Par conséquence, différents résultats de stabilité exponentielle ou polynomiale sont établis. Une étude spectrale conduit à l’optimalité des résultats obtenus. Finalement, dans le cas de la stabilisation d’un système de deux équations d’ondes couplées, un amortissement localement distribué de type Kelvin-Voight est appliqué à une seule équation. D’abord, d’après un théorème de Hormander, un résultat d’unicité est montré et par conséquent la stabilité forte du système est assurée. Ensuite, une décroissance polynomiale de l’énergie du système est établie. / Résumé en anglais non disponible
2

Analyse numérique pour les équations de Hamilton-Jacobi sur réseaux et contrôlabilité / stabilité indirecte d'un système d'équations des ondes 1D / Numerical analysis for Hamilton-Jacobi equations on networks and indirect controllability/stability of a 1D system of wave equations

Koumaiha, Marwa 19 July 2017 (has links)
Cette thèse est composée de deux parties dans lesquelles nous étudions d'une part des estimations d'erreurs pour des schémas numériques associés à des équations de Hamilton-Jacobi du premier ordre. D'autre part, nous nous intéressons a l'étude de la stabilité et de la contrôlabilité exacte frontière indirecte des équations d'onde couplées.Dans un premier temps, en utilisant la technique de Crandall-Lions, nous établissons une estimation d'erreur d'un schéma numérique monotone aux différences finies pour des conditions de jonction dites a flux limité, pour une équation de Hamilton-Jacobi du premier ordre. Ensuite, nous montrons que ce schéma numérique peut être généralisé à des conditions de jonction générales. Nous établissons alors la convergence de la solution discrétisée vers la solution de viscosité du problème continu. Enfin, nous proposons une nouvelle approche, à la Crandall-Lions, pour améliorer les estimations d'erreur déjà obtenues, pour une classe des Hamiltoniens bien choisis. Cette approche repose sur l'interprétation du type contrôle optimal de l'équation de Hamilton-Jacobi considérée.Dans un second temps, nous étudions la stabilisation et la contrôlabilité exacte frontière indirecte d'un système monodimensionnel d’équations d'ondes couplées. D'abord, nous considérons le cas d'un couplage avec termes de vitesses, et par une méthode spectrale, nous montrons que le système est exactement contrôlable moyennant un seul contrôle à la frontière. Les résultats dépendent de la nature arithmétique du quotient des vitesses de propagation et de la nature algébrique du terme de couplage. De plus, ils sont optimaux. Ensuite, nous considérons le cas d'un couplage d'ordre zéro et nous établissons un taux polynômial optimal de la décroissance de l'énergie. Enfin, nous montrons que le système est exactement contrôlable moyennant un seul contrôle à la frontière / The aim of this work is mainly to study on the one hand a numerical approximation of a first order Hamilton-Jacobi equation posed on a junction. On the other hand, we are concerned with the stability and the exact indirect boundary controllability of coupled wave equations in a one-dimensional setting.Firstly, using the Crandall-Lions technique, we establish an error estimate of a finite difference scheme for flux-limited junction conditions, associated to a first order Hamilton-Jacobi equation. We prove afterwards that the scheme can generally be extended to general junction conditions. We prove then the convergence of the numerical solution towards the viscosity solution of the continuous problem. We adopt afterwards a new approach, using the Crandall-Lions technique, in order to improve the error estimates for the finite difference scheme already introduced, for a class of well chosen Hamiltonians. This approach relies on the optimal control interpretation of the Hamilton-Jacobi equation under consideration.Secondly, we study the stabilization and the indirect exact boundary controllability of a system of weakly coupled wave equations in a one-dimensional setting. First, we consider the case of coupling by terms of velocities, and by a spectral method, we show that the system is exactly controllable through one single boundary control. The results depend on the arithmetic property of the ratio of the propagating speeds and on the algebraic property of the coupling parameter. Furthermore, we consider the case of zero coupling parameter and we establish an optimal polynomial energy decay rate. Finally, we prove that the system is exactly controllable through one single boundary control

Page generated in 0.1088 seconds