Spelling suggestions: "subject:"equations dde hamilton - jacobi"" "subject:"equations dde hamilton - iacobi""
1 |
Numerical PDE techniques for personal finance and insurance problems /Wang, Jin. January 2006 (has links)
Thesis (Ph.D.)--York University, 2006. Graduate Programme in Applied Mathematics. / Typescript. Includes bibliographical references (leaves 134-142). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:NR19766
|
2 |
Random and periodic homogenization for some nonlinear partial differential equationsSchwab, Russell William, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2009. / Title from PDF title page (University of Texas Digital Repository, viewed on Sept. 9, 2009). Vita. Includes bibliographical references.
|
3 |
Analyse asymptotique d'équations intégro-différentielles : modèles d'évolution et de dynamique des populations / Asymptotic Analysis of Integro-differential Equations : populations dynamics and evolutionary modelsPatout, Florian 27 September 2019 (has links)
Cette thèse est consacrée à l’étude de phénomènes de propagation et de concentration dans des modèles d’équations intégro-différentielles venant de la écologie. On étudie certaines équations de réaction-diffusion non locales apparaissant en dynamique de populations, ainsi que des modèles représentant l’évolution Darwinienne avec un mode de reproduction sexué.Dans une première partie, nous étudions la propagation spatiale pour une équation de réaction-diffusion ou la dispersion opère via un noyau de convolution à queue lourde. Nous mesurons de manière précise l’accélération du front de propagation de la solution. Nous proposons également une échelle adaptée pour mesurer les «petites» mutations. Dans les deux cas nous utilisons le formalisme des équations de Hamilton-Jacobi.Dans un second temps nous étudions un modèle de génétique quantitative, avec un mode de reproduction sexuée. Un petit paramètre mesure la déviation entre le trait des descendants est la moyenne des traits des parents. Dans le régime où ce paramètre est petit nous étudions l’existence de solutions stationnaires, puis le problème de Cauchy lié à ce modèle. Les solutions se concentrent autour des optima de sélection, sous la forme de perturbations de distributions Gaussiennes avec petite variance fixée par le paramètre. Notre analyse généralise le cas linéaire de la reproduction asexuée en utilisant des outils d’analyse perturbative. Enfin dans une dernière partie nous fournissons des simulations numériques et des méthodes mathématiques pour étudier la dynamique interne des équilibres dans le régime de petite variance, pour les deux modes de reproduction : asexué et sexué. / This manuscript tackles propagation and concentration phenomena in different integro-differential equations with a background in ecology. We study non local reaction-diffusion equations from population dynamics, and models for Darwinian evolution with a sexual or asexual mode of reproduction, with a preference for the former.In a first part, we study spatial propagation for a reaction diffusion equation where dispersion acts through a fat tailed kernel. We measure accurately the acceleration of the propagation front of the population. We propose as well a scaling well adapted to “small mutations” when we consider the model in the context of adaptative dynamics. This scaling is very natural following the previous spatial investigation. In both cases we look at the long time behavior and we use the Hamilton-Jacobi framework. Then we turn our attention towards a quantitative genetics model, with a sexual mode of reproduction, imposed by the “infinitesimal operator”. In this non-linear setting, a small parameter tunes the deviation between the phenotypic trait of the offspring and the mean of the traits of the parents. In the regime where this parameter is small, we prove existence of stationary solutions, and their local uniqueness. We also provide an example of non-uniqueness in the case where the selection function admits several extrema. We prove that the solution concentrates around the points of minimum of the selection function. The analysis is carried by the small perturbations of special profiles : Gaussian distributions with small variance fixed by the parameter.We then study the stability of the Cauchy problem associated to the previous model. This time we prove that at all times, for a well prepared initial data, the solutions is arbitrary close to a Gaussian distribution with small variance. The proof follows the framework of the previous : we use perturbative analysis tools, but this time an even more precise description of the correctors is needed and we linearize the equation to obtain it. In a final part we show numerical simulations and different mathematical approaches to study inside dynamics of phenotypic lineages in the regime of small variance, with a moving environement.
|
4 |
Asymptotic Analysis of Partial Differential Equations Arising in Biological Processes of Anomalous Diffusion / Analyse asymptotique d’équations aux dérivées partielles issues de processus biologiques de diffusion anormaleMateos González, Álvaro 22 September 2017 (has links)
Cette thèse est consacrée à l'analyse asymptotique d'équations aux dérivées partielles issues de modèles de déplacement sous-diffusif en biologie cellulaire. Notre motivation biologique est fondée sur les nombreuses observation récentes de protéinescytoplasmiques dont le déplacement aléatoire dévié de la diffusion Fickienne normale. Dans la première partie, nous étudions la décroissance auto-similaire de la solution d'une équation de renouvellement à queue lourde vers un état stationnaire. Les idéesmises en jeu sont inspirées de méthodes d'entropie relative. Nos principaux apports sont la preuve d'un taux de décroissance en norme L1 vers la loi de l'arc-sinus et l'introduction d'une fonction pivot spécifique dans une méthode d'entropie relative.La seconde partie porte sur la limite hyperbolique d'une équation de renouvellement structurée en âge et à sauts en espace. Nous y prouvons un résultat de « stabilité » : les solutions des problèmes rééchelonnés à ε > 0 convergent lorsque ε --> 0 vers la solution de viscosité de l'équation de Hamilton-Jacobi limite des problèmes à ε > 0. Les outilsmis en jeu proviennent de la théorie des équations de Hamilton-Jacobi.Ce travail présente trois idées intéressantes. La première est celle de prouver le résultat de convergence sur la condition de bord du problème plutôt que d'utiliser des fonctions test perturbées. La deuxième consiste en l'introduction de termes correcteurslogarithmiques en temps dans des estimations a priori ne découlant pas directementdu principe du maximum. Cela est dû à la non-existence d'un équilibre du problèmehomogène en espace. La troisième est une estimation précise de la décroissance de l'influence de la condition initiale sur le terme de renouvellement. Elle correspond à une estimation fine d'une version non-locale de la dérivée temporelle de la solution. Au cours de cette thèse, des simulations numériques de type Monte Carlo, schémas volumes finis, Lax-Friedrichs et Weighted Essentially Non Oscillating ont été réalisées. / This thesis is devoted to the asymptotic analysis of partial differential equations modelling subdiffusive random motion in cell biology. The biological motivation for this work is the numerous recent observations of cytoplasmic proteins whose random motion deviates from normal Fickian diffusion. In the first part, we study the self-similar decay towards a steady state of the solution of a heavy-tailed renewal equation. The ideas therein are inspired from relative entropy methods. Our main contributions are the proof of an L1 decay rate towards the arc-sine distribution and the introduction of a specific pivot function in a relative entropy method.The second part treats the hyperbolic limit of an age-structured space-jump renewal equation. We prove a "stability" result: the solutions of the rescaled problems at ε > 0 converge as ε --> 0 towards the viscosity solution of the limiting Hamilton-Jacobi equation of the ε > 0 problems. The main mathematical tools used come from the theory of Hamilton-Jacobi equations. This work presents three interesting ideas. The first is that of proving the convergence result on the boundary condition of the studied problem rather than using perturbed test functions. The second consists in the introduction of time-logarithmic correction termsin a priori estimates that do not follow directly from the maximum principle. That is due to the non-existence of a suitable equilibrium for the space-homogenous problem. The third is a precise estimate of the decay of the inuence of the initial condition on the renewal term. This is tantamount to a refined estimate of a non-local version of the time derivative of the solution. Throughout this thesis, we have performed numerical simulations of different types: Monte Carlo, finite volume schemes, Lax-Friedrichs schemes and Weighted Essentially Non Oscillating schemes.
|
5 |
Analyse numérique pour les équations de Hamilton-Jacobi sur réseaux et contrôlabilité / stabilité indirecte d'un système d'équations des ondes 1D / Numerical analysis for Hamilton-Jacobi equations on networks and indirect controllability/stability of a 1D system of wave equationsKoumaiha, Marwa 19 July 2017 (has links)
Cette thèse est composée de deux parties dans lesquelles nous étudions d'une part des estimations d'erreurs pour des schémas numériques associés à des équations de Hamilton-Jacobi du premier ordre. D'autre part, nous nous intéressons a l'étude de la stabilité et de la contrôlabilité exacte frontière indirecte des équations d'onde couplées.Dans un premier temps, en utilisant la technique de Crandall-Lions, nous établissons une estimation d'erreur d'un schéma numérique monotone aux différences finies pour des conditions de jonction dites a flux limité, pour une équation de Hamilton-Jacobi du premier ordre. Ensuite, nous montrons que ce schéma numérique peut être généralisé à des conditions de jonction générales. Nous établissons alors la convergence de la solution discrétisée vers la solution de viscosité du problème continu. Enfin, nous proposons une nouvelle approche, à la Crandall-Lions, pour améliorer les estimations d'erreur déjà obtenues, pour une classe des Hamiltoniens bien choisis. Cette approche repose sur l'interprétation du type contrôle optimal de l'équation de Hamilton-Jacobi considérée.Dans un second temps, nous étudions la stabilisation et la contrôlabilité exacte frontière indirecte d'un système monodimensionnel d’équations d'ondes couplées. D'abord, nous considérons le cas d'un couplage avec termes de vitesses, et par une méthode spectrale, nous montrons que le système est exactement contrôlable moyennant un seul contrôle à la frontière. Les résultats dépendent de la nature arithmétique du quotient des vitesses de propagation et de la nature algébrique du terme de couplage. De plus, ils sont optimaux. Ensuite, nous considérons le cas d'un couplage d'ordre zéro et nous établissons un taux polynômial optimal de la décroissance de l'énergie. Enfin, nous montrons que le système est exactement contrôlable moyennant un seul contrôle à la frontière / The aim of this work is mainly to study on the one hand a numerical approximation of a first order Hamilton-Jacobi equation posed on a junction. On the other hand, we are concerned with the stability and the exact indirect boundary controllability of coupled wave equations in a one-dimensional setting.Firstly, using the Crandall-Lions technique, we establish an error estimate of a finite difference scheme for flux-limited junction conditions, associated to a first order Hamilton-Jacobi equation. We prove afterwards that the scheme can generally be extended to general junction conditions. We prove then the convergence of the numerical solution towards the viscosity solution of the continuous problem. We adopt afterwards a new approach, using the Crandall-Lions technique, in order to improve the error estimates for the finite difference scheme already introduced, for a class of well chosen Hamiltonians. This approach relies on the optimal control interpretation of the Hamilton-Jacobi equation under consideration.Secondly, we study the stabilization and the indirect exact boundary controllability of a system of weakly coupled wave equations in a one-dimensional setting. First, we consider the case of coupling by terms of velocities, and by a spectral method, we show that the system is exactly controllable through one single boundary control. The results depend on the arithmetic property of the ratio of the propagating speeds and on the algebraic property of the coupling parameter. Furthermore, we consider the case of zero coupling parameter and we establish an optimal polynomial energy decay rate. Finally, we prove that the system is exactly controllable through one single boundary control
|
6 |
Homogénéisation stochastique de quelques problèmes de propagations d'interfaces / Stochastic homogenization of some front propagation problemsHajej, Ahmed 01 July 2016 (has links)
Dans ce travail, on étudie l'homogénéisation de quelques problèmes de propagations de fronts dans des milieux stationnaires et ergodiques. Dans la première partie, on étudie l'homogénéisation stochastique de quelques problèmes de propagations de fronts non-locaux. En particulier, on donne une version non-locale de la méthode de la fonction test perturbée d'Evans. La deuxième partie est consacrée à l'approximation numérique du Hamiltonien effectif qui découle de l'homogénéisation stochastique des équations de Hamilton-Jacobi. On établit des estimations d'erreurs entre les solutions numériques et l'Hamiltonien effectif. Dans la troisième partie, on s'intéresse à l'homogénéisation stochastique de problèmes de propagations de fronts qui évoluent dans la direction normale avec une vitesse qui peut être non bornée. On montre des résultats d'homogénéisation dans le cas des milieux i.i.d. / In this work, we study the homogenization of some front propagation problems in stationary ergodic media. In the first part, we study the stochastic homogenization of non-local front propagation problems. In particular, we give a non-local variation of the perturbed test function method of Evans. The second part is devoted to numerical approximations of the effective Hamiltonian arising in stochastic homogenization of Hamilton-Jacobi equations. We establish error estimates between numerical solutions and the effective Hamiltonian. In the third part, we are interested in the stochastic homogenization of front propagation problems moving in the normal direction with possible unbounded velocity. Assuming that the media satisfies a finite range of dependence condition, we prove homogenization results.
|
7 |
Utilités Progressives Dynamiques.M'Rad, Mohamed 19 October 2009 (has links) (PDF)
En 2002, Marek Musiela et Thaleia Zariphopoulo ont introduit la notion de {\em forward utility}, c'est à dire une utilité dynamique, progressive, cohérente avec un marché financier donné. On peut voir ce processus comme un champ aléatoire $U(t,x)$ adapté à l'information disponible, qui a chaque instant est une utilité standard (donc en particulier à la date $0$, compatible avec une famille de stratégies données $(X^{\pi})$ au sens où pour tout $t,h>0$, $ \mathbb{E}(U(t+h,X^{\pi}_{t+h})|\mathcal{F}_t)\leq U(t,X^{\pi}_t)$ et il existe un portefeuille optimal $X^*$ pour lequel l'inégalité est une égalité.\\ Les auteurs ont fait plusieurs articles sur ce sujet, montrant en particulier comment les utilités classiques, puissance, exponentielle, etc doivent être modifiées pour être des utilités dynamique progressives. Une attention limitée a été portée à l'univers d'investissement. \noindent Dans mon travail de thèse, je considère un cadre beaucoup plus général. En effet, le marché est incomplet dans le sens où un investisseur est contraint, à chaque date $t\ge 0$, de choisir ces stratégies admissibles dans des cones convexes fermés, adaptés $\K_t (X_t)$ dépendent du niveau de sa richesse $X_t$. Je considère par la suite que les champs aléatoires $U(t,x)$ évoluent selon la dynamique \begin{equation}\label{eq:champ} dU(t,x)=\beta(t,x)+\Gamma(t,x) dW_t,~U(0,.)=u(.) (\text{donnée}) \end{equation} Comme dans l'optimisation classique, (dite rétrograde puisqu'on reconstruit l'information à partir de la fin), %je montre que le terme %$\beta(t,x)$ contient, contient nécéssairement, un terme de type hamiltonien classique %modifié par la présence de la dérivée de la volatilité %$\Gamma(t,x)$ de l'utilité progressive. Et par conséquent toute utilité progressive qui % satisfait les hypothèses de régularités du lemme d'Itô-Ventzell % satisfait je me propose d'étudier les équations de type Hamilton-Jacobi-Bellman que satisfait une utilités progressive $u(t,x)$. Pour mener cette étude, j'utilise une formule d'Itô généralisée apellée la formule de Ventzell-Friedlin, qui permet d'établir la décomposition de type Itô de la composée d'un champ aléatoire avec un processus d'Itô. Je montre alors que le terme $\beta(t,x)$ contient, nécéssairement, un terme de type hamiltonien classique modifié par la présence de la dérivée de la volatilité $\Gamma(t,x)$ de l'utilité progressive. Et par conséquent toute utilité progressive qui satisfait les hypothèses de régularités du lemme d'Itô-Ventzell satisfont l' équation différentielle stochastique suivante \begin{equation}\label{EDPSU} dU(t,x)=\Big\{-xU'_{x}\, r_t dt+ \frac{1}{2U''_{xx}(t,x)}\|\prod_{\K_t(x)\sigma_t}\big(U'_{x}(t,x) \eta_t+\Gamma'_x(t,x)\big) \|^2\Big\}(t,x)\,dt\>+\Gamma(t,x)\,dW_t. \end{equation} avec comme portefeuille optimal $X^*$ le processus associé à la stratégie $\pi^*$ donnée par \begin{equation} x\pi^*(t,x)\sigma_t=- \frac{1}{U''_{xx}(t,x)}\|\prod_{\K_t(x)\sigma_t}\big(U'_{x}(t,x) \eta_t+\Gamma'_x(t,x)\big)(t,x) \end{equation} \noindent où $r$ est le taux court, $\eta$ la prime de marché, $\sigma$ la matrice de variance covariance des actifs et $ \prod_{\K_t(x)\sigma_t}$ désigne l'opérateur de projection sur le cône $\K_t(x)\sigma_t$. \\ Ce point de vue permet de vérifier que le champ aléatoire, s'il existe est compatible avec l'univers d'investissement. Cependant, la question de la convexité et de la monotonie est complexe a priori, car il n'existe pas de théorèmes de comparaison pour les équations progressives (qui sont {\em forward}), contrairement au cas des équations rétrogrades. La question de l'interprétation et du rôle de la volatilité s'avère alors être centrale dans cette étude. Contrairement au cadre général que je considère ici, M.Musiela et T.Zariphopoulo, puis C.Rogers et al se sont restreint au cas où la volatilité de l'utilité est identiquement nulle. Le processus progressif $u(t,x)$ est alors une fonction déterministe satisfaisant une EDP non linéaire, que les auteurs ont transformé en solution harmonique espace temps de l'équation de la chaleur. \\ Mon choix a été d'étudire la question de la volatilité par des techniques de changement de numéraire; ainsi, je montre la stabilité de la notion d'utilité progressive par changement de numéraire. L'avantage considérable de cette technique, comparée à la méthode classique, % Comme dans le cas % classique, le problème est compliqué par le fait que l'espace des % contraites n'est pas invariant par changement de numéraire. est le fait qu'elle permet de se ramener toujours à un marché "martingale" ($r=0$ et $\eta=0$), ce qui simplifie considérablement les équations et les calculs. La dérivée de la volatilité apparaît alors comme une prime de risque instantanée que le marché introduit, et qui dépend du niveau de la richesse de l'investisseur. Ce point de vue nouveau permet de répondre à la question de l'interprétation de la volatilité de l'utilité. Dans la suite, j'étudie le problème dual et je montre que la transformée de {\em Fenchel} $\tU$ de la fonction concave $U(t,x)$ est un champ markovien lui aussi satisfaisant la dynamique \begin{eqnarray}\label{EDPSDuale'} d\tilde{U}(t,y)=\left[\frac{1}{2\tU_{yy}''}(\|\tilde{\Gamma}'\|^2-\|\prod_{\K_t(-\tU_y'(t,y))\sigma_t}(\tilde{\Gamma}^{'}_y-y\eta_t)\|^2) +y\tU_{y}' r_t\right](t,y)dt +\tilde{\Gamma}(t,y)dW_t,~~\tilde{\Gamma}(t,y)=\Gamma(t,\tU_y'(t,y)). \end{eqnarray} À partir de ce résultat je montre que le problème dual admet une unique solution $Y^*$ dans la volatilté $\nu^*$ est donnée par \begin{equation} y\nu^*(t,y)= -\frac{1}{\tU_{yy}''}\Big(\tilde{\Gamma}'+y\eta_t-\prod_{\K_t(-\tU_y')\sigma_t}(\tilde{\Gamma}^{'}_y-y\eta_t)\Big)(t,y). \end{equation} \noindent Ce ci permettra d'établir les identités clé suivantes: \begin{eqnarray} &Y^*(t,(U_x')^{-1}(0,x))=U'_x(t,X^*(t,x)) \label{A}\\ &(\Gamma'_x+U'_x\eta)(t,x)=(xU''(t,x)\pi^*(t,x)\sigma_t+\nu^*(U_x'(t,x))\label{B}. \end{eqnarray} % Remarquons que le terme $(\Gamma'_x+U'_x\eta)$ se décompose de manière unique sous forme % de sa projection sur le cone $\K\sigma$, qui est la stratégie optimale, et la projection sur le cone dual $\K^* \sigma$, % qui est la volatilité du processus optimal dual. Mais notre but est deux termes projétés su comme la projection % Á partir de la première identité nous savons que $U'_x(t,X^*(t,x))$ n'est autre que le processus optimal dual %Á ce stade rapellons que le but de cette étude est de carracteriser les utilités progressives. La question par la suite est la suivante: peut-on caractériser l'utilité $U(t,x)$ pour tout $x>0$ à partir de la première identité? Ceci peut paraître trop demander car nous cherchons à caractériser le champ $U$ connaissant seulement son comportement le long de l'unique trajectoire optimale $X^*$. Cependant, la réponse à cette question s'avère être positive et assez simple. En effet, notons par $\Y(t,x):=Y^*(t,(U_x')^{-1}(0,x))$, et supposons que le flot stochastique $X^*$ soit inversible, $\X$ désigne son inverse. Alors, en inversant dans (\ref{A}), je déduis que $U_x'(t,x)=\Y(t,\X(t,x))$. En intégrant par rapport à $x$, j'obtiens que $U(t,x)=\int_0^x\Y(t,\X(t,z))dz$, ce qui prouve le théorème suivant: \begin{theo} Sous des hypothèses de régularités et d'inversion du flot $X^*$, les processus $U$ définis par $U(t,x)=\int_0^x\Y(t,\X(t,z))dz$ sont des utilités progressives solutions de l'EDP stochastique (\ref{EDPSU}). \end{theo} % %\noindent Inversement, je montre le théorème d'EDP stochastique suivant: \begin{theo} Soit $U$ un champ aléatoire solutions de l'EDP stochastique (\ref{EDPSU}). En utilisant la décompostion (\ref{B}), si les EDS suivantes \begin{eqnarray*} & dX^*_t(x)=X^*_t(x)(r_tdt+\pi^*(t,X^*_t(x))\sigma_t(dW_t+\eta_tdt)),X^*_0(x)=x ~\\ & dY^*_t(y)=Y^*_t(y)(-r_tdt+\nu^*(t,Y^*_t(y))dW_t),~Y^*_0(y)=y \end{eqnarray*} admettent des solutions fortes unique et monotonnes, alors, en notant par $ \Y(t,x):=Y^*(t,(U_x')^{-1}(0,x))$ et par $\X$ le flot inverse de $X$, on obtient que $U(t,x)= \int_0^x\Y(t,\X(t,z))dz$. Si de plus $X^*$ et $Y^*$ sont croissants, $U$ est concave. \end{theo} \noindent %Dans ce travail, je considère toujours un marché incomplet, Dans une seconde partie de ce travail, je me place dans un cadre beaucoup plus général dans le sens où les actifs sont supposés être cadlag locallement bornés, et par conséquent la filtration n'est plus une filtration brownienne. Je remplace les contraintes de type cône convexe par des contraintes plus générales de type ensemble convexe. Le but de cette partie est de caractériser toutes les utilités progressives avec le minimum d'hypothèses, notamment avec moins d'hypothèses de régularités sur les champs aléatoires $U$. Je ne suppose plus que $U$ est deux fois différentiable et par conséquent je ne peut plus appliquer le lemme d'Itô-Ventzell. L'approche est alors différente: je commence par établir des conditions d'optimalité sur le processus de richesses optimale ainsi que le processus optimal dual, et ce en utilisant des méthodes d'analyse. En utilisant ces résultats je démontre, par des éléments d'analyse, la convexité ainsi que les conditions d'optimalités que toutes les utilités progressives générant une richesse croissante est de la forme $\int_0^x\Y(t,\X(t,z))dz$ avec $\Y$ : $\Y X$ est une surmartingale pour toute richesse $X$ et une martingale si $X=X^*$.
|
8 |
Evolution de fronts avec vitesse non-locale et équations de Hamilton-JacobiLey, Olivier 08 December 2008 (has links) (PDF)
Ce mémoire présente mes travaux de recherche effectués après ma thèse, entre 2002 et 2008. Les thèmes principaux sont les équations aux dérivées partielles non-linéaires et des problèmes d'évolutions de fronts ou d'interfaces. Il est organisé en trois chapitres.<br /><br />Le premier chapitre concerne l'évolution de fronts avec une vitesse normale prescrite. Pour étudier ce genre de problème, une première approche, dite par lignes de niveaux, consiste àreprésenter le front comme une ligne de niveau d'une fonction auxiliaire u. Cette approche ramène l'étude du problème d'évolution géométrique à un problème d'EDP puisque u vérifie une équation de Hamilton-Jacobi. Quelques résultats dans le cas de vitesses locales comme la courbure moyenne sont présentés mais la majorité des résultats concerne le cas de vitesses non-locales décrivant la dynamique des dislocations dans un cristal ou modélisant l'asymptotique d'un système de FitzHugh-Nagumo apparaissant en biologie. Une approche différente, basée sur des solutions de viscosité géométriques, est utilisée pour étudier des problèmes de propagation de fronts apparaissant en optimisation de formes. Le but est de trouver un ensemble optimal minimisant une énergie du type capacité à volume ou périmètre constant. L'idée est de déformer le bord d'un ensemble donné avec une vitesse normale adéquate de manière à diminuer au plus son énergie. La mise en oeuvre de cette idée nécessite la construction rigoureuse d'une telle évolution pour tout temps et la preuve de la convergence vers une solution du problème initial. De plus, la décroissance de l'énergie est obtenue le long du flot.<br /><br />Le deuxième chapitre décrit des résultats d'unicité, d'existence et d'homogénéisation pour des équations de Hamilton-Jacobi-Bellman. La majeure partie du travail effectué concerne des équations provenant de problèmes de contrôle stochastique avec des contrôles non-bornés. Les équations comportent alors des termes quadratiques par rapport au gradient et les solutions étudiées sont elles-mêmes à croissance quadratique. Des liens entre ces solutions et les fonctions valeurs des problèmes de contrôle correspondants sont établis. La seconde partie est consacrée à un théorème d'homogénéisation pour un système d'équations de Hamilton-Jacobi du premier ordre.<br /><br />Le troisième et dernier chapitre traite d'un sujet un peu à part, à savoir le lien entre les flots de gradient et l'inégalité de Lojasiewicz. La principale originalité de ce travail est de placer l'étude dans un cadre hilbertien pour des fonctions semiconvexes, ce qui sort du cadre de l'inégalité de Lojasiewicz classique. Le principal théorème produit des caractérisations de cette inégalité. Les résultats peuvent être précisés dans le cas des fonctions convexes ; en particulier, un contre-exemple de fonction convexe ne vérifiant pas l'inégalité de Lojasiewicz est construit. Cette dernière inégalité est reliée à la longueur des trajectoires de gradient. Une borne de cette longueur est obtenue pour les fonctions convexes coercives en dimension deux même lorsque cette inégalité n'est pas vérifiée.
|
Page generated in 0.1 seconds