Spelling suggestions: "subject:"óxido dde grafeno"" "subject:"óxido dde grafenos""
71 |
Síntese e processamento de compósito cerâmico zircônia-grafeno / Synthesis and processing of zirconia-graphene ceramic compositeDiego Santos Manarão 27 February 2018 (has links)
O objetivo desse trabalho foi desenvolver um compósito cerâmico de zircônia-grafeno para aplicação odontológica. Este estudo avaliou o efeito do pó de partida, concentração de grafeno e da temperatura de sinterização sobre as propriedades mecânicas (dureza e tenacidade à fratura) do compósito desenvolvido. Para isto foram sintetizados os pós de Y-TZP a partir de soluções de óxido-cloreto de zircônio e cloreto de ítrio na proporção desejada de 3mol% através da rota de co-precipitação em solução de hidróxido de amônio seguido por uma série de lavagens em água, etanol e butanol com posterior destilação azeotrópica, secagem, moagem e calcinação. O grafeno foi obtido a partir da exfoliação química de grafite pelo método de Hummers [40] modificado por Marcano [39], o que resultou em um gel acastanhado que foi submetido a lavagem por centrifugação, secagem e desaglomeração em almofariz de ágata, resultando, por fim, no óxido de grafeno. Uma segunda etapa foi o processo de redução química com ácido ascórbico para obtenção de óxido de grafeno reduzido, um pó de coloração escura que foi adicionado à Y-TZP para a obtenção do compósito nas diversas concentrações (em mol%) que foram estudadas: (0,01%, 0,05%, 0,10%, 0,50%, 1,00% e 2,00%). Os pós foram caracterizados por termogravimetria, difração de raios X e espectroscopia (FT-IR). Os espécimes foram confeccionados em matriz metálica cilíndrica e sinterizados em forno tubular em atmosfera inerte. Outros espécimes foram confeccionados em matriz de grafite de alta densidade e sinterizados por Spark Plasma Sintering (SPS). Todas as amostras foram caracterizadas por meio de ensaios de densidade, dureza Vickers, tenacidade à fratura e microscopia eletrônica de varredura. Os maiores valores de densidade relativa foram observados para as amostras sinterizadas em SPS, sendo que se obteve valor de densidade relativa de 98,7 % para a concentração de 0,50% de grafeno e 98,4% para a Y-TZP pura. Por outro lado, o maior valor encontrado em sinterização em atmosfera a 1400°C sem a presença de H2 para Y-TZP pura foi da ordem de 96,76%. Os valores de dureza foram maiores nas amostras sinterizadas em SPS, no entanto a tenacidade à fratura mostrou não se alterar em função do conteúdo de grafeno. As fotomicrografias de MEV mostraram que houve uma variação de tamanho de grão de acordo com a presença do grafeno e do método de sinterização. De acordo com os resultados obtidos neste trabalho foi possível concluir que o processamento desenvolvido permitiu a criação de um compósito cerâmico zircônia-grafeno que pôde ser caracterizado por diversos métodos analíticos. A densidade teórica do compósito desenvolvido não foi alcançada por meio de nenhum dos métodos de sinterização utilizados (Tubular ou SPS) e nem variando-se a temperatura. Para espécimes sinterizados em atmosfera inerte, a maior temperatura de sinterização (1400°C) e a presença do gás H2 não melhorou a densificação. Além disso, esses espécimes tiveram aumento da dureza com o aumento da concentração de grafeno, entretanto, a sua tenacidade à fratura não foi afetada pelo teor de grafeno. Para espécimes sinterizados por meio de SPS, a temperatura de sinterização de 1350°C resultou em melhores valores de densificação. Além disso, para este tipo de sinterização, tanto a dureza como a tenacidade à fratura foram afetadas pelo teor de grafeno. / The objective of this work was to develop a zirconia-graphene ceramic composite for dental application. The study evaluated the effect of the starting powder effect, graphene concentration and sintering temperature on the mechanical properties of the composite. For this, the Y-TZP powders were synthesized from zirconium chloride and yttrium chloride solutions in the desired ratio of 3 mol% through the co-precipitation route in ammonium hydroxide solution followed by a series of washes in water, ethanol and butanol with subsequent azeotropic distillation, drying, grinding and calcination. Graphene was obtained from the chemical exfoliation of graphite by the method of Humans modified by Marcano, which resulted in a brownish gel that was subjected to washing by centrifugation, drying and deagglomeration in agate mortar, resulting finally in the graphene oxide. A second step was the chemical reduction with ascorbic acid to obtain reduced graphene oxide, a dark-colored powder that was added to the Y-TZP to obtain the composite in the various concentrations (in mol%) that were studied (0, 01%, 0.05%, 0.10%, 0.50%, 1.00% and 2.00%). The powders were characterized by thermogravimetry, X-ray diffraction and spectroscopy (FT-IR). The specimens were made in cylindrical metallic matrix and sintered in a tubular oven. Other samples were made in high density graphite matrix and sintered by Spark Plasma Sintering (SPS). All samples were characterized by means of density tests, Vickers hardness, fracture toughness and scanning electron microscopy. The highest values of relative density were observed for the sintered samples in SPS. A relative density of 98.7% was obtained for the 0.50% concentration of graphene and 98.4% for the pure Y-TZP. On the other hand, the highest value found in tubular sintering at 1400 ° C without the presence of H2 for pure Y-TZP was of the order of 96.76%. The hardness values were higher in the sintered samples in SPS, however the fracture toughness showed not to change as a function of the content of graphene. SEM images showed that there was a variation of grain size according to the presence of graphene and the sintering method. According to the results of this study it was concluded that the process developed allowed the creation of a graphene-zirconia ceramic composite which can be characterized by various analytical methods. The theoretical density of the composite developed was not achieved by any of the sintering methods used (tubular or SPS) nor by varying the temperature. For tubular sintered specimens, the higher sintering temperature (1400 ° C) and the presence of H2 gas did not improve densification. In addition, these specimens had increased hardness with increasing graphene concentration, however, their fracture toughness was not affected by graphene content. For sintered specimens by SPS, the sintering temperature of 1350 ° C resulted in better densification values. In addition, for this type of sintering, both hardness and fracture toughness were affected by the content of graphene
|
72 |
Obtenção de scaffolds poliméricos baseados em poli(ácido lático), hidroxiapatita e óxido de grafeno utilizando o método de manufatura aditiva por “fused deposition modeling”Siqueira, André da Silva 06 February 2018 (has links)
Submitted by Marta Toyoda (1144061@mackenzie.br) on 2018-05-14T18:21:27Z
No. of bitstreams: 2
André da Silva Siqueira.pdf: 3776282 bytes, checksum: 6603b366db594cfde0276b33c03a1968 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Paola Damato (repositorio@mackenzie.br) on 2018-05-21T13:34:35Z (GMT) No. of bitstreams: 2
André da Silva Siqueira.pdf: 3776282 bytes, checksum: 6603b366db594cfde0276b33c03a1968 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-05-21T13:34:35Z (GMT). No. of bitstreams: 2
André da Silva Siqueira.pdf: 3776282 bytes, checksum: 6603b366db594cfde0276b33c03a1968 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-02-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The present work aims to obtain and characterize a composite filament based on poly (lactic acid) (PLA), hydroxyapatite (HA) and graphene oxide, to process it by fused deposition modeling (FDM), and then make scaffolds for bone tissue growth and order to evaluate the properties of the obtained structure. To achieve these goals composite of PLA/HA, PLA/GO and PLA / HA / GO with concentrations of 0.05 wt %, 0.1 wt % and 0.3 wt % GO and 30 wt % HA were obtained by melt state blending and subsequently processed by FDM. The graphite oxide was obtained by modified Hummers method and characterized by X-ray diffraction (XRD), thermogravimetric analysis and Raman spectroscopy. The PLA and composites were characterized by molar mass measurements, infrared and Raman spectroscopy, tensile strength tests, contact angle measurements (surface energy), differential scanning calorimetry (DSC) and rheological tests. The insertion of GO into PLA and PLA/HA composites led to improvements in the mechanical properties (tensile) and also modified significantly the surface properties of the materials and the composition with 0.05 wt % of GO has shown the better results in both characteristics. These improvements occurred due to the strong interaction of the GO sheets with the PLA matrix that indicates the process of obtaining the composites via the melting state was correctly conducted. All PLA / HA / GO compositions presented rheological characteristics compatible with of scaffolds production process via FDM. The insertion of the GO into the PLA matrix and the PLA / HA composite has been shown to be extremely promising, and possibly to increase the variety of PLA / HA based biomaterials application. / O presente trabalho visa obter e caracterizar um filamento compósito baseado em poli(ácido lático) (PLA), hidroxiapatita (HA) e óxido de grafeno, processá-lo por Fused deposition modeling (FDM), fabricar scaffolds para crescimento de tecido ósseo. Para alcançar esses objetivos fcompósitos de PLA/HA, PLA/GO e PLA/HA/GO com concentrações de 0,05%, 0,1% e 0,3% de GO e 30% de HA (em massa) foram preparados por meio de mistura no estado fundido e posteriormente processados por FDM. Comprovou-se a obtenção do óxido de grafite por técnicas de difração de raios-X (DRX), análise termogravimétrica e espectroscopia Raman. O PLA e os compósitos foram caracterizados por medidas de massa molar da matriz polimérica, espectroscopia no infravermelho e Raman, ensaios mecânicos de tração, medidas de ângulos de contato (energia de superfície), calorimetria exploratória diferencial (DSC) e ensaios reológicos. A inserção do GO no PLA e no compósito PLA/HA conduziu a melhorias das propriedades mecânicas (tração) dos materiais e também modificou significativamente as propriedades de superfície dos materiais estudados, sendo a concentração de 0,05% em massa a que apresentou melhor desempenho em ambas as características. Essas melhorias aconteceram devido à forte interação das folhas de GO com a matriz de PLA, o que indica que o processo de obtenção dos compósitos via estado fundido foi corretamente conduzido. Todas as composições PLA/HA/GO apresentaram características reológicas compatíveis com o processo de produção dos scaffolds via FDM. A inserção do GO na matriz de PLA e no compósito PLA/HA demonstrou-se ser extremamente promissora, e possivelmente aumentarão a variedade de aplicações dos biomateriais baseados em PLA/HA.
|
Page generated in 0.0512 seconds