Spelling suggestions: "subject:"équations dde langevin"" "subject:"équations dde angevin""
1 |
Approches stochastiques de la dynamique des collisions nucléaires.Boilley, D. 09 September 1993 (has links) (PDF)
Afin d'étudier l'influence des fluctuations sur différents phénomènes physiques liés aux collisions entre ions lourds, une équation de Langevin a été obtenue à partir d'un modèle microscopique. Les paramètres entrant dans cette équation sont entièrement déterminés à partir de grandeurs microscopiques caractérisant la matière nucléaire. Cette équation a été appliquée à des phénomènes physiques aux énergies intermédiaires. Une première partie concerne les mouvements collectifs de faible amplitude, à savoir les résonnances géantes. Les effets de mémoire dans le terme decollisions de l'équation de Boltzmann ont été étudiés. Une approche formelle à l'influencedes fluctuations sur plusieurs modes couplés est aussi proposée. Une deuxième partie concerne les mouvements collectifs de grande amplitude où une étude détaillée de la fission thermique est faite . Le taux de fission est calculé et confronté aux résultats expérimentaux. Enfin, un travail préliminaire sur la multifragmentation est proposé.
|
2 |
Contributions aux approches hamiltonienne et markovienne des systèmes quantiques ouvertsDhahri, Ameur 13 July 2007 (has links) (PDF)
En mécanique statistique quantique, un système quantique ouvert représente un petit système de degré fini de liberté en interaction avec un système extérieur très large (bain thermique, réservoir bosonique, environnement... ).<br /> <br /> Pour décrire cette interaction, les physiciens et les mathématiciens utilisent souvent deux approches: l'approche markovienne et l'approche hamiltonienne.<br /> <br /> Nous comparons systématiquement les approches hamiltonienne et markovienne dans les cas des modèles de spin-boson et de Pauli-Fierz. Ensuite, nous présentons un modèle lindbladien pour une chaîne de N spins couplée à des bains thermiques. Puis, nous étudions le lien entre les interactions quantiques répétées et la limite de densité faible. Finalement, nous étudions les propriétés des équations d'évolutions discrètes associées aux modèles d'interactions répétées, qui sont dirigées par des bruits discrets classiques.
|
3 |
Quelques contributions à l'analyse numérique d'équations stochastiquesKopec, Marie 25 June 2014 (has links) (PDF)
Ce travail présente quelques résultats concernant le comportement en temps fini et en temps long de méthodes numériques pour des équations stochastiques. On s'intéresse d'abord aux équations différentielles stochastiques de Langevin et de Langevin amorti. On montre un résultat concernant l'analyse d'erreur faible rétrograde de ses équations par des schémas numériques implicites. En particulier, on montre que l'erreur entre le générateur associé au schéma numérique et la solution d'une équation de Kolmogorov modifiée est d'ordre élevé par rapport au pas de discrétisation. On montre aussi que la dynamique associée au schéma numérique est exponentiellement mélangeante. Dans un deuxième temps, on étudie le comportement en temps long d'une discrétisation en temps et en espace d'une EDPS semi-linéaire avec un bruit blanc additif, qui possède une unique mesure invariante . On considère une discrétisation en temps par un schéma d'Euler et en espace par une méthode des éléments finis. On montre que la moyenne, par rapport aux lois invariantes (qui n'est pas forcément unique) associées à l'approximation, par des fonctions tests suffisamment régulières est proche de la quantité correspondante pour . Plus précisément, on étudie la vitesse de convergence par rapport aux différents paramètres de discrétisation. Enfin, on s'intéresse à une EDPS semi-linéaire avec un bruit blanc additif dont le terme non-linéaire est un polynôme. On étudie la convergence au sens faible d'une approximation en temps par un schéma de splitting implicite.
|
4 |
Asymptotique des solutions d'équations différentielles de type frottement perturbées par des bruits de Lévy stables / Asymptotic of solutions of friction type differential equations disturbed by stable Lévy noiseÉon, Richard 05 July 2016 (has links)
Cette thèse porte sur l'étude d'équations différentielles de type frottement, c'est à dire d'équations de type attractive, avec un unique point stable 0, caractérisant la vitesse d'un objet soumis à une force de frottement. La vitesse de cet objet subit des perturbations aléatoires de type Lévy. Dans une première partie, nous nous intéressons aux propriétés fondamentales de ces EDS : existence et unicité de la solution, caractère markovien et ergodique de celle-ci et plus particulièrement le cas des processus de Lévy stable. Dans une deuxième partie, nous étudions la stabilité de la solution de ces EDS lorsque la perturbation est un processus de Lévy stable qui tend vers 0. En effet, nous démontrons l'existence d'un développement limité d'ordre un autour de la solution déterministe pour la vitesse et la position de l'objet. Dans une troisième partie, nous étudions le comportement asymptotique des solutions lorsque la vitesse initiale est nulle et que la perturbation est un processus de Lévy stable symétrique. Nous prouvons dans cette partie que l'accumulation de perturbations entraîne un comportement asymptotique gaussien de la position de l'objet, à condition que l'indice de stabilité du processus de Lévy et la croissance du potentiel soient suffisamment grand. Dans une quatrième partie, nous levons l'hypothèse de symétrie de la perturbation en démontrant le même résultat que dans la troisième partie mais avec une dérive. Pour cela, nous étudions tout d'abord la queue de distribution de la mesure invariante associée à la vitesse de l'objet. Enfin dans une dernière partie, nous nous intéressons au résultat de la troisième partie lorsque la perturbation est la somme d'un mouvement brownien et d'un processus de Lévy purement à sauts. Puis nous commençons l'étude de la dimension deux en traitant le cas où les équations sont découplées mais où les mouvement brownien directeurs sont dépendants. / This thesis deals with the study of friction type differential equations, in other words, attractive equations, with a unique stable point 0, describing the speed of an object submitted to a frictional force. This object's speed is disturbed by Lévy type random perturbations. In a first part, one is interested in fondamental properties of these SDE: existence and unicity of a solution, Markov and ergodic properties, and more particularly the case of stable Lévy processes.In a second part, one study the stability of the solution of these SDE when the perturbation is an stable Lévy process that tends to 0. In fact, one proves the existence of a Taylor expansion of order one around the deterministic solution for the object's speed and position. In a third part, one study the asymptotic behaviour of the solutions when the initial speed is 0 and the perturbation is a symmetric stable Lévy process. One proves that the amount of perturbations, if the stability's index of the Lévy process and the increasing of the potential are big enough, leads to a gaussian asymptotic behaviour for the object's position.In a forth part, one relaxes the assumption of symmetry of the perturbation by proving the same result as in the third part but with a drift. To do so, one first studies the tail of the invariant measure of the object's speed.Finally, in a last part, one is interested in the same result as in the third part when the perturbation is the sum of the Brownian motion and a pure jump stable Lévy process. Then, one begins the study of the dimension two by considering the case where the equations are separated but where the driving Brownian motions are dependent.
|
Page generated in 0.0872 seconds