• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Continuous and Discrete Stochastic Models of the F1-ATPase Molecular Motor / Modèles continu et discret du moteur moléculaire F1-ATPase

Gerritsma, Eric 28 June 2010 (has links)
L'objectif de notre thèse de doctorat est d’étudier et de décrire les propriétés chimiques et mé- caniques du moteur moléculaire F1 -ATPase. Le moteur F1 -ATPase est un moteur rotatif, d’aspect sphérique et d’environ 10 nanomètre de rayon, qui utilise l’énergie de l’hydrolyse de l’ATP comme car- burant moléculaire. Des questions fondamentales se posent sur le fonctionnement de ce moteurs et sur la quantité de travail qu’il peut fournir. Il s’agit de questions qui concernent principalement la thermodynamique des processus irréversibles. De plus, comme ce moteur est de taille nanométrique, il est fortement influencé par les fluctuations moléculaires, ce qui nécessite une approche stochastique. C’est en créant deux modéles stochastiques complémentaires de ce moteur que nous avons contribué à répondre à ces questions fondamentales. Le premier modèle discuté au chapitre 5 de la thèse, est un mod- èle continu dans le temps et l’espace, décrit par des équations de Fokker-Planck, est construit sur des résultats expérimentaux. Ce modèle tient compte d’une description explicite des fluctua- tions affectant le degré de liberté mécanique et décrit les tran- sitions entre les différents états chimiques discrets du moteur, par un processus de sauts aléatoires entre premiers voisins. Nous avons obtenus des résultats précis concernant la chimie d’hydrolyse et de synthèse de l’ATP, et pour les dépendences du moteur en les différentes variables mécaniques, à savoir, la friction et le couple de force extérieur, ainsi que la dépendence en la température. Les résultats que nous avons obtenus avec ce modèle sont en ex- cellent accord avec les observations expérimentales. Le second modèle est discret dans l’espace et continu dans le temps et est décrit dans le chapitre 6. L’analyse des résultats obtenus par simulations numériques montre que le modèle est en accord avec les observations expérimentales et il permet en outre de dériver des grandeurs thermodynamiques analytique- ment, décrites au chapitre 4, ce que le modèle continu ne permet pas. La comparaison des deux modèles révele la nature du fonction- nement du moteur, ainsi que son régime de fonctionnement loin de l’équilibre. Le second modèle a éte soumis récemment pour publication.
2

Stochasticité de l'expression génique et régulation transcriptionnelle -- Modélisation de la dynamique spatiale et temporelle des structures multiprotéiques

Coulon, Antoine 01 July 2010 (has links) (PDF)
La nature stochastique de l'expression génique est maintenant clairement établie expérimentalement et apparaît comme une composante à part entière de la dynamique cellulaire. Une source importante de cette variabilité est liée au caractère dynamique des diverses structures multiprotéiques impliquées dans le processus d'expression génique. Nous étudions ici, par la modélisation, comment les interactions entre des molécules au comportement individuel probabiliste sont susceptibles de faire naître des dynamiques globales pouvant influencer l'expression génique. Nous nous concentrons plus particulièrement sur deux aspects du processus d'expression : d'une part, son caractère spatialisé au sein d'un noyau cellulaire structuré et dynamique et, d'autre part, la combinatoire des événements moléculaires stochastiques au niveau du promoteur d'un gène. Pour l'étude des phénomènes d'organisation mésoscopique au sein du noyau cellulaire, nous proposons un modèle de simulation "4D" (intégrant l'espace et le temps). Il emprunte différentes techniques aux formalismes des échelles inférieures (moléculaires) et supérieures (cellulaires), en gardant les aspects essentiels à notre étude (individualité de certaines molécules, exclusion stérique, interactions électromagnétiques, réactions chimiques . . .). Afin d'étudier spécifiquement la dynamique stochastique de la régulation transcriptionnelle, nous proposons un second modèle décrivant les événements d'association/dissociation et de modification de la chromatine en se basant sur l'affinité coopérative/compétitive des molécules et leur potentielle activité enzymatique ou de remodelage. Par des techniques analytiques et computationnelles, nous caractérisons alors l'activité du promoteur à l'aide d'outils de théorie du signal, mais aussi en reproduisant les mesures obtenues par diverses techniques expérimentales (cinétique de ChIP, FRAP, FRET, cytométrie de flux . . .). L'analyse de ce modèle démontre que l'activité spontanée du promoteur peut être complexe et structurée, présentant en particulier des dynamiques multi-échelles similaires à celles observées expérimentalement (turnover rapide des molécules, comportements cycliques lents, hétérogénéités transcriptionnelles . . .). Nous montrons enfin comment la confrontation de mesures expérimentales de diverses natures peut renseigner sur la structure du système sous-jacent. Ce modèle apparaît alors comme un cadre théorique général pour l'étude de la dynamique des promoteurs et pour l'interprétation intégrée de données expérimentales.
3

Contributions aux approches hamiltonienne et markovienne des systèmes quantiques ouverts

Dhahri, Ameur 13 July 2007 (has links) (PDF)
En mécanique statistique quantique, un système quantique ouvert représente un petit système de degré fini de liberté en interaction avec un système extérieur très large (bain thermique, réservoir bosonique, environnement... ).<br /> <br /> Pour décrire cette interaction, les physiciens et les mathématiciens utilisent souvent deux approches: l'approche markovienne et l'approche hamiltonienne.<br /> <br /> Nous comparons systématiquement les approches hamiltonienne et markovienne dans les cas des modèles de spin-boson et de Pauli-Fierz. Ensuite, nous présentons un modèle lindbladien pour une chaîne de N spins couplée à des bains thermiques. Puis, nous étudions le lien entre les interactions quantiques répétées et la limite de densité faible. Finalement, nous étudions les propriétés des équations d'évolutions discrètes associées aux modèles d'interactions répétées, qui sont dirigées par des bruits discrets classiques.
4

Elimination adiabatique pour systèmes quantiques ouverts / Adiabatic elimination for open quantum systems

Azouit, Rémi 27 October 2017 (has links)
Cette thèse traite du problème de la réduction de modèle pour les systèmes quantiquesouverts possédant différentes échelles de temps, également connu sous le nom d’éliminationadiabatique. L’objectif est d’obtenir une méthode générale d’élimination adiabatiqueassurant la structure quantique du modèle réduit.On considère un système quantique ouvert, décrit par une équation maîtresse deLindblad possédant deux échelles de temps, la dynamique rapide faisant converger lesystème vers un état d’équilibre. Les systèmes associés à un état d’équilibre unique ouune variété d’états d’équilibre ("decoherence-free space") sont considérés. La dynamiquelente est traitée comme une perturbation. En utilisant la séparation des échelles de temps,on développe une nouvelle technique d’élimination adiabatique pour obtenir, à n’importequel ordre, le modèle réduit décrivant les variables lentes. Cette méthode, basée sur undéveloppement asymptotique et la théorie géométrique des perturbations singulières, assureune bonne interprétation physique du modèle réduit au second ordre en exprimant ladynamique réduite sous une forme de Lindblad et la paramétrisation définissant la variétélente dans une forme de Kraus (préservant la trace et complètement positif). On obtientainsi des formules explicites, pour calculer le modèle réduit jusqu’au second ordre, dans lecas des systèmes composites faiblement couplés, de façon Hamiltonienne ou en cascade;des premiers résultats au troisième ordre sont présentés. Pour les systèmes possédant unevariété d’états d’équilibre, des formules explicites pour calculer le modèle réduit jusqu’ausecond ordre sont également obtenues. / This thesis addresses the model reduction problem for open quantum systems with differenttime-scales, also called adiabatic elimination. The objective is to derive a generic adiabaticelimination technique preserving the quantum structure for the reduced model.We consider an open quantum system, described by a Lindblad master equation withtwo time-scales, where the fast time-scale drives the system towards an equilibrium state.The cases of a unique steady state and a manifold of steady states (decoherence-free space)are considered. The slow dynamics is treated as a perturbation. Using the time-scaleseparation, we developed a new adiabatic elimination technique to derive at any orderthe reduced model describing the slow variables. The method, based on an asymptoticexpansion and geometric singular perturbation theory, ensures the physical interpretationof the reduced second-order model by giving the reduced dynamics in a Lindblad formand the mapping defining the slow manifold as a completely positive trace-preserving map(Kraus map) form. We give explicit second-order formulas, to compute the reduced model,for composite systems with weak - Hamiltonian or cascade - coupling between the twosubsystems and preliminary results on the third order. For systems with decoherence-freespace, explicit second order formulas are as well derived.
5

Dynamique et contrôle de systèmes quantiques ouverts

Chenel, Aurélie 16 July 2014 (has links) (PDF)
L'étude des effets quantiques, comme les cohérences quantiques, et leur exploitation en contrôle par impulsion laser constituent encore un défi numérique pour les systèmes de grande taille. Pour réduire la dimensionnalité du problème, la dynamique dissipative se focalise sur un sous-espace quantique dénommé 'système', qui inclut les degrés de liberté les plus importants. Le système est couplé à un bain thermique d'oscillateurs harmoniques. L'outil essentiel de la dynamique dissipative est la densité spectrale du bain, qui contient toutes les informations sur le bain et sur l'interaction entre le système et le bain. Plusieurs stratégies complémentaires existent. Nous adoptons une équation maîtresse quantique non-markovienne pour décrire l'évolution de la matrice densité associée au système. Cette approche, développée par C. Meier et D.J. Tannor, est perturbative en fonction du couplage entre le système et le bain, mais pas en fonction de l'interaction avec un champ laser. Le but est de confronter cette méthodologie à des systèmes réalistes calibrés par des calculs de structure électronique ab initio. Une première étude porte sur la modélisation du transfert d'électron ultrarapide à une hétérojonction oligothiophène-fullerène, présente dans des cellules photovoltaïques organiques. La description du problème en fonction d'une coordonnée brownienne permet de contourner la limitation du régime perturbatif. Le transfert de charge est plus rapide mais moins complet lorsque la distance R entre les fragments oligothiophène et fullerène augmente. La méthode de dynamique quantique décrite ci-dessus est ensuite combinée à la Théorie du Contrôle Optimal (OCT), et appliquée au contrôle d'une isomérisation, le réarrangement de Cope, dans le contexte des réactions de Diels-Alder. La prise en compte de la dissipation dès l'étape d'optimisation du champ permet à l'algorithme de contrôle de contrer la décohérence induite par l'environnement et conduit à un meilleur rendement. La comparaison de modèles à une et deux dimensions montre que le contrôle trouve un mécanisme adapté au modèle utilisé. En deux dimensions, il agit activement sur les deux coordonnées du modèle. En une dimension, le décohérence est minimisée par une accélération du passage par les états délocalisés situés au-dessus de la barrière de potentiel.
6

Continuous and discrete stochastic models of the F1-ATPase molecular motor / Modèles continu et discret du moteur moléculaire F1-ATPase

Gerritsma, Eric 28 June 2010 (has links)
L'objectif de notre thèse de <p>doctorat est d’étudier et de décrire les propriétés chimiques et mé- <p>caniques du moteur moléculaire F1 -ATPase. Le moteur F1 -ATPase <p>est un moteur rotatif, d’aspect sphérique et d’environ 10 nanomètre <p>de rayon, qui utilise l’énergie de l’hydrolyse de l’ATP comme car- <p>burant moléculaire. <p>Des questions fondamentales se posent sur le fonctionnement de <p>ce moteurs et sur la quantité de travail qu’il peut fournir. Il s’agit <p>de questions qui concernent principalement la thermodynamique <p>des processus irréversibles. De plus, comme ce moteur est de <p>taille nanométrique, il est fortement influencé par les fluctuations <p>moléculaires, ce qui nécessite une approche stochastique. <p>C’est en créant deux modéles stochastiques complémentaires de <p>ce moteur que nous avons contribué à répondre à ces questions <p>fondamentales. <p>Le premier modèle discuté au chapitre 5 de la thèse, est un mod- <p>èle continu dans le temps et l’espace, décrit par des équations de <p>Fokker-Planck, est construit sur des résultats expérimentaux. <p>Ce modèle tient compte d’une description explicite des fluctua- <p>tions affectant le degré de liberté mécanique et décrit les tran- <p>sitions entre les différents états chimiques discrets du moteur, <p>par un processus de sauts aléatoires entre premiers voisins. Nous <p>avons obtenus des résultats précis concernant la chimie d’hydrolyse <p>et de synthèse de l’ATP, et pour les dépendences du moteur en les <p>différentes variables mécaniques, à savoir, la friction et le couple <p>de force extérieur, ainsi que la dépendence en la température. <p>Les résultats que nous avons obtenus avec ce modèle sont en ex- <p>cellent accord avec les observations expérimentales. <p>Le second modèle est discret dans l’espace et continu dans le <p>temps et est décrit dans le chapitre 6. L’analyse des résultats <p>obtenus par simulations numériques montre que le modèle est <p>en accord avec les observations expérimentales et il permet en <p>outre de dériver des grandeurs thermodynamiques analytique- <p>ment, décrites au chapitre 4, ce que le modèle continu ne permet <p>pas. <p>La comparaison des deux modèles révele la nature du fonction- <p>nement du moteur, ainsi que son régime de fonctionnement loin <p>de l’équilibre. Le second modèle a éte soumis récemment pour <p>publication. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
7

Dynamique et contrôle de systèmes quantiques ouverts / Dynamics and control of open quantum systems

Chenel, Aurélie 16 July 2014 (has links)
L'étude des effets quantiques, comme les cohérences quantiques, et leur exploitation en contrôle par impulsion laser constituent encore un défi numérique pour les systèmes de grande taille. Pour réduire la dimensionnalité du problème, la dynamique dissipative se focalise sur un sous-espace quantique dénommé 'système', qui inclut les degrés de liberté les plus importants. Le système est couplé à un bain thermique d'oscillateurs harmoniques. L'outil essentiel de la dynamique dissipative est la densité spectrale du bain, qui contient toutes les informations sur le bain et sur l'interaction entre le système et le bain. Plusieurs stratégies complémentaires existent. Nous adoptons une équation maîtresse quantique non-markovienne pour décrire l'évolution de la matrice densité associée au système. Cette approche, développée par C. Meier et D.J. Tannor, est perturbative en fonction du couplage entre le système et le bain, mais pas en fonction de l'interaction avec un champ laser. Le but est de confronter cette méthodologie à des systèmes réalistes calibrés par des calculs de structure électronique ab initio. Une première étude porte sur la modélisation du transfert d'électron ultrarapide à une hétérojonction oligothiophène-fullerène, présente dans des cellules photovoltaïques organiques. La description du problème en fonction d'une coordonnée brownienne permet de contourner la limitation du régime perturbatif. Le transfert de charge est plus rapide mais moins complet lorsque la distance R entre les fragments oligothiophène et fullerène augmente. La méthode de dynamique quantique décrite ci-dessus est ensuite combinée à la Théorie du Contrôle Optimal (OCT), et appliquée au contrôle d'une isomérisation, le réarrangement de Cope, dans le contexte des réactions de Diels-Alder. La prise en compte de la dissipation dès l'étape d'optimisation du champ permet à l'algorithme de contrôle de contrer la décohérence induite par l'environnement et conduit à un meilleur rendement. La comparaison de modèles à une et deux dimensions montre que le contrôle trouve un mécanisme adapté au modèle utilisé. En deux dimensions, il agit activement sur les deux coordonnées du modèle. En une dimension, le décohérence est minimisée par une accélération du passage par les états délocalisés situés au-dessus de la barrière de potentiel. / The study of quantum effects as quantum coherences and their exploitation for control by laser pulse are still a numerical challenge in big systems. To reduce the dimensionality of the problem, dissipative dynamics focuses on a quantum subspace called 'system', that includes the most important degrees of freedom. The system is coupled to a thermal bath made of harmonic oscillators. The essential tool of dissipative dynamics is the spectral density of the bath, that contains all the information about the bath and the interaction between the system and the bath. Several strategies coexist and complement one another. We adopt a non-Markovian quantum master equation for the evolution of the density matrix associated to the system. This approach, developped by C. Meier and D.J. Tannor, is perturbative in the system-bath coupling, but not in the interaction with a laser field. Our goal is to confront this methodology to realistic systems calibrated by ab initio electronic structure calculations. We first study the ultrafast electron transfer modelling an oligothiophene-fullerene heterojunction, found in organic photovoltaic cells. We present a way of overcoming the limitation of the perturbative regime, using a Brownian oscillator representation to describe the problem. Charge transfer is faster but less complete when the R distance between oligothiophene and fullerene fragments increases. Then we combine the quantum dynamical method described above with the Optimal Control Theory (OCT) method. An application is the control of an isomerization, the Cope rearrangement, in the context of Diels-Alder reactions. Including the dissipation at the design stage of the field enables the control algorithm to react on the environment-induced decoherence and to lead to a better yield. Comparing one and two-dimension models shows that control finds a mechanism adapted to the model. In two dimensions, it actively acts on the two coordinates of the model. In one dimension, decoherence is minimized by accelerating the way through the delocalized states located above the potential energy barrier.

Page generated in 0.165 seconds