Spelling suggestions: "subject:"l'équirépartition"" "subject:"d'équirépartition""
1 |
Equirépartition des orbites du groupe affine sur une surface de VeechJourdan, Sylvie 11 March 2011 (has links)
Dans ce mémoire, nous nous intéressons aux surfaces de translation. Ce sont des surfaces compactes munies d'une métrique plate, qui possèdent des singularités coniques et sur lesquelles, on peut choisir une direction verticale. De manière équivalente, une surface de translation est aussi une 1-forme holomorphe sur une surface de Riemann. Des exemples majeurs de telles surfaces sont les surfaces obtenues par “ dépliage ” de billards rationnels.Nous identifions deux surfaces de translation images l'une de l'autre par une isométrie préservant l'orientation et la direction verticale. La classe d'une surface par cette relation d'équivalence est encore une surface de translation que l'on appelle surface réduite de la surface de départ.Nous définissons les difféomorphismes affines d'une surface de translation comme les difféomorphismes de cette surface dont la différentielle est constante. Ils forment un groupe appelé le groupe affine de la surface.Le groupe SL(2,IR) agit linéairement sur l'ensemble des surfaces de translation. Le stabilisateur de la surface réduite d'une surface de translation est appelé le groupe de Veech de la surface de translation. Les éléments du groupe de Veech sont en fait les matrices jacobiennes des difféomorphismes affines. Ce groupe est un outil indispensable dans l'étude des surfaces de translation et notre travail en est une illustration. Si le groupe de Veech est un réseau de SL(2,IR), la surface est appelée surface de Veech.L'objectif de ce mémoire est de démontrer que, sur une surface de Veech donnée, les orbites denses du groupe affine s'équirépartissent sur la surface. Nous précisons bien sûr la notion d'équirépartition utilisée. Il est important de noter que les orbites qui ne sont pas denses sont finies et qu'il y en a au plus un nombre dénombrable. Ce résultat est d'abord établi pour la surface réduite de la surface de translation et permet d'en déduire le théorème pour la surface de départ. / In this thesis, we study translation surfaces. These are compact surfaces equipped with a flat metric and conical singularities. A vertical direction is fixed. Translation surfaces are in one to one correspondence with holomorphic 1-forms on Riemann surfaces. Important examples of translation surfaces arise from unfolding billiards in rational polygons.Two translation surfaces are identified if they are obtained one from the other by an isometry preserving the orientation and the vertical direction. The equivalence class of a surface is still a translation surface called the reduced surface. Affine diffeomorphisms on a translation surface are diffeomorphisms whose differential is constant. They form a group called the affine group. The group SL(2,R) acts linearly on the set of translation surfaces. The stabilizer of the reduced surface is the Veech group of the translation surface. The elements of the Veech group are in fact the derivative of the affine diffeomorphisms. This group is of great importance in the study of translation surfaces and our work illustrate this phenomenon. If the Veech group is a lattice in SL(2,R), the surface is called a Veech surface. The goal of this thesis is to prove that dense orbit of the affine group on a Veech surface are equidistributed in the surface. One has to explain precisely what equidistribution means in this context. It is important to notice that non dense orbits are finite and that the number of these orbits is at most countable. The result is first of all established for reduced surfaces and we deduce a general result for all surfaces.
|
2 |
Equirepartition dans les espaces homogènesGuilloux, Antonin 25 January 2007 (has links) (PDF)
On s'intéresse dans cette thèse à quelques propriétés de répartition d'ensembles dans des variétés homogènes. Nous étudions principalement deux techniques : d'abord nous exploitons des résultats de mélange adélique dûs à Clozel-Oh-Ullmo et à Gorodnik-Maucourant-Oh, pour étudier certains ensembles de matrices rationnelles dans un groupe réel compact (par exemple un groupe orthogonal d'une forme quadratique entière définie positive). On donne des conditions d'existence de matrices dont le ppcm des dénominateurs des coefficients est égal à un entier n et on montre que l'ensemble de ces matrices de « dénominateur n » , dès qu'il est non-vide, s'équirépartit vers la probabilité de Haar dans le groupe réel quand n tend vers l'infini. ensuite, nous utilisons certaines propriétés des dynamiques polynomiales - par exemple le théorème de Ratner sur la rigidité des dynamiques unipotentes dans un espace homogène. Cela nous permet de montrer des résultats d'équirépartition d'orbites d'un réseau du groupe spécial linéaire d'un corps local de caractéristique nulle dans un certain espace homogène sous ce groupe. Ensuite, nous adaptons des techniques de Dani, Margulis et G.Tomanov pour montrer un analogue S-arithmétique d'un résultat d'équirépartition dû à Shah dans le cas réel. Dans un troisième temps, nous abordons un problème un peu différent : étant donné un corps local k de caractéristique nulle, et H un sous-groupe d'indice fini des inversibles de k, nous montrons que le groupe spécial linéaire sur k de dimension n admet un sous-groupe Zariski-dense dont toutes les matrices ont leur spectre inclus dans H si et seulement si -1 est dans H ou bien n n'est pas congru à 2 modulo 4.
|
3 |
Problèmes d’équirépartition des entiers sans facteur carré / Equidistribution problems of squarefree numbersMoreira Nunes, Ramon 29 June 2015 (has links)
Cette thèse concerne quelques problèmes liés à la répartition des entiers sans facteur carré dansles progressions arithmétiques. Ces problèmes s’expriment en termes de majorations du terme d’erreurassocié à cette répartition.Les premier, deuxième et quatrième chapitres sont concentrés sur l’étude statistique des termesd’erreur quand on fait varier la progression arithmétique modulo q. En particulier on obtient une formuleasymptotique pour la variance et des majorations non triviales pour les moments d’ordre supérieur. Onfait appel à plusieurs techniques de théorie analytique des nombres comme les méthodes de crible et lessommes d’exponentielles, notamment une majoration récente pour les sommes d’exponentielles courtesdue à Bourgain dans le deuxième chapitre.Dans le troisième chapitre on s’intéresse à estimer le terme d’erreur pour une progression fixée. Onaméliore un résultat de Hooley de 1975 dans deux directions différentes. On utilise ici des majorationsrécentes de sommes d’exponentielles courtes de Bourgain-Garaev et de sommes d’exponentielles torduespar la fonction de Möbius dues à Bourgain et Fouvry-Kowalski-Michel. / This thesis concerns a few problems linked with the distribution of squarefree integers in arithmeticprogressions. Such problems are usually phrased in terms of upper bounds for the error term relatedto this distribution.The first, second and fourth chapter focus on the satistical study of the error terms as the progres-sions varies modulo q. In particular we obtain an asymptotic formula for the variance and non-trivialupper bounds for the higher moments. We make use of many technics from analytic number theorysuch as sieve methods and exponential sums. In particular, in the second chapter we make use of arecent upper bound for short exponential sums by Bourgain.In the third chapter we give estimates for the error term for a fixed arithmetic progression. Weimprove on a result of Hooley from 1975 in two different directions. Here we use recent upper boundsfor short exponential sums by Bourgain-Garaev and exponential sums twisted by the Möbius functionby Bourgain et Fouvry-Kowalski-Michel.
|
4 |
Propriétés arithmétiques et combinatoires de la fonction somme des chiffres / Arithmetical and combinatorial properties of the sum of digits functionAloui, Karam 15 December 2014 (has links)
L'objet de cette thèse est l'étude de certaines propriétés arithmétiques et combinatoires de la fonction somme des chiffres. Nous commençons par étudier les sommes d'exponentielles de la forme $dissum_{nleq x}expleft(2ipileft(frac{l}{m}S_q(n)+frac{k}{m'}S_{q}(n+1)+theta nright)right)$ en vue de montrer un résultat d'équirépartition modulo $1$ et un théorème probabiliste d'ErdH{o}s-Kac. Ensuite, on va généraliser un problème dû à Gelfond concernant l'étude de la répartition dans les progressions arithmétiques de la fonction somme des chiffres au cas des nombres ellipséphiques. En particulier, on donne un théorème analogue à celui d'Erdös, Mauduit et S'arközy sur l'uniforme répartition des entiers ellipséphiques dans les progressions arithmétiques sous une contrainte sur la somme des chiffres. Enfin, une étude de l'ordre moyen de certaines fonctions arithmétiques soumises à des contraintes digitales est faite en conséquence des travaux de Mkaouar et Wannès. / The aim of this thesis is the study of some arithmetic and combinatoric properties of the sum of digits function. We start by the study of exponential sums of the form $dissum_{nleq x}expleft(2ipileft(frac{l}{m}S_q(n)+frac{k}{m'}S_q(n+1)+theta nright)right)$ in order to establish a result of equidistribution modulo $1$ in addition to a probabilistic theorem of the kind ErdH{o}s-Kac. Then, we generalize a problem due to Gelfond concerning the distribution in residue classes of the sum of digits function in the case of integers with missing digits. Besides, we give a similar result to that of ErdH{o}s, Mauduit and S'ark"{o}zy on the uniform distribution of integers with missing digits in arithmetic progressions under a constraint on the sum of digits. Finally, a study of the order of magnitude of some arithmetical functions under digital constraints is done as a consequence of the works of Mkaouar and Wannès.
|
Page generated in 0.0646 seconds