• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Equirepartition dans les espaces homogènes

Guilloux, Antonin 25 January 2007 (has links) (PDF)
On s'intéresse dans cette thèse à quelques propriétés de répartition d'ensembles dans des variétés homogènes. Nous étudions principalement deux techniques : d'abord nous exploitons des résultats de mélange adélique dûs à Clozel-Oh-Ullmo et à Gorodnik-Maucourant-Oh, pour étudier certains ensembles de matrices rationnelles dans un groupe réel compact (par exemple un groupe orthogonal d'une forme quadratique entière définie positive). On donne des conditions d'existence de matrices dont le ppcm des dénominateurs des coefficients est égal à un entier n et on montre que l'ensemble de ces matrices de « dénominateur n » , dès qu'il est non-vide, s'équirépartit vers la probabilité de Haar dans le groupe réel quand n tend vers l'infini. ensuite, nous utilisons certaines propriétés des dynamiques polynomiales - par exemple le théorème de Ratner sur la rigidité des dynamiques unipotentes dans un espace homogène. Cela nous permet de montrer des résultats d'équirépartition d'orbites d'un réseau du groupe spécial linéaire d'un corps local de caractéristique nulle dans un certain espace homogène sous ce groupe. Ensuite, nous adaptons des techniques de Dani, Margulis et G.Tomanov pour montrer un analogue S-arithmétique d'un résultat d'équirépartition dû à Shah dans le cas réel. Dans un troisième temps, nous abordons un problème un peu différent : étant donné un corps local k de caractéristique nulle, et H un sous-groupe d'indice fini des inversibles de k, nous montrons que le groupe spécial linéaire sur k de dimension n admet un sous-groupe Zariski-dense dont toutes les matrices ont leur spectre inclus dans H si et seulement si -1 est dans H ou bien n n'est pas congru à 2 modulo 4.
2

Groupe de Brauer des espaces homogènes à stabilisateur non connexe et applications arithmétiques / The Brauer group of homogeneous spaces with non connected stabilizer and arithmetical applications

Lucchini Arteche, Giancarlo 29 September 2014 (has links)
Dans cette thèse, on s'intéresse au groupe de Brauer non ramifié des espaces homogènes à stabilisateur non connexe et à ses applications arithmétiques. On développe notamment différentes formules de nature algébrique et/ou arithmétique permettant de calculer explicitement, tant sur un corps fini que sur un corps de caractéristique 0, la partie algébrique du groupe de Brauer non ramifié d'un espace homogène G\G' sous un groupe linéaire G' semi-simple simplement connexe à stabilisateur fini G, le tout en donnant des exemples de calculs que l'on peut faire avec ces formules. Pour ce faire, on démontre au préalable (à l'aide d'un théorème de Gabber sur les altérations) un résultat décrivant la partie de torsion première à p du groupe de Brauer non ramifié d'une variété V lisse et géométriquement intègre sur un corps fini ou sur un corps global de caractéristique p au moyen de l'évaluation des éléments de Br(V) sur ses points locaux. Les formules pour un stabilisateur fini sont ensuite généralisées au cas d'un stabilisateur G quelconque via une réduction de la cohomologie galoisienne du groupe G à celle d'un certain sous-quotient fini. Enfin, pour K un corps global et G un K-groupe fini résoluble, on démontre sous certaines hypothèses sur une extension déployant G que l'espace homogène V:=G\G' avec G' un K-groupe semi-simple simplement connexe vérifie l'approximation faible (ces hypothèses assurant la nullité du groupe de Brauer non ramifié algébrique). On utilise une version plus précise de ce résultat pour démontrer ensuite le principe de Hasse pour des espaces homogènes X sous un K-groupe G' semi-simple simplement connexe à stabilisateur géométrique fini et résoluble, sous certaines hypothèses sur le K-lien défini par X. / This thesis studies the unramified Brauer group of homogeneous spaces with non connected stabilizer and its arithmetic applcations. In particular, we develop different formulas of algebraic and/or arithmetic nature allowing an explicit calculation, both over a finite field and over a field of characteristic 0, of the algebraic part of the unramified Brauer group of a homogeneous space G\G' under a semisimple simply connected linear group G' with finite stabilizer G. We also give examples of the calculations that can be done with these formulas. For achieving this goal, we prove beforehand (using a theorem of Gabber on alterations) a result describing the prime-to-p torsion part of the unramified Brauer group of a smooth and geometrically integral variety V over a global field of characteristic p or over a finite field by evaluating the elements of Br(V) at its local points. The formulas for finite stabilizers are later generalised to the case where the stabilizer G is any linear algebraic group using a reduction of the Galois cohomology of the group G to that of a certain finite subquotient.Finally, for a global field K and a finite solvable K-group G, we show under certain hypotheses concerning the extension splitting G that the homogeneous space V:=G\G' with G' a semi-simple simply connected K-group has the weak approximation property (the hypotheses ensuring the triviality of the unramified algebraic Brauer group). We use then a more precise version of this result to prove the Hasse principle forhomogeneous spaces X under a semi-simple simply connected K-group G' with finite solvable geometric stabilizer, under certain hypotheses concerning the K-kernel (or K-lien) defined by X.
3

Surfaces des espaces homogènes de dimension 3

Cartier, Sébastien 15 September 2011 (has links) (PDF)
Ce mémoire porte sur l'étude des surfaces minimales et de courbure moyenne constante dans les espaces homogènes de dimension 3. Nous établissons les formules de Sym-Bobenko pour les surfaces de courbure moyenne constante 1/2 de H^2xR et minimales du groupe de Heisenberg, et donnons des exemples de construction de telles immersions par la méthode DPW. Nous montrons également que des propriétés de symétrie passent aux correspondances de type surfaces sœurs et cousines, ce qui entraîne l'existence de graphes entiers de courbure moyenne constante 1/2 à bout vertical dans H^2xR qui ne sont pas de révolution. Nous reprenons ensuite l'étude des bouts verticaux d'immersions de courbure moyenne constante 1/2 dans H^2xR. Nous munissons une famille de graphes entiers d'une structure de variété lisse et en déduisons un analogue pour H^2xR d'un théorème de A. E. Treibergs pour l'espace de Minkowski. Nous nous intéressons également aux déformations des anneaux de révolution. Une conséquence directe est l'existence d'anneaux immergés qui ne sont pas de révolution. Nous construisons notamment des anneaux dont les bouts n'ont pas le même axe. Enfin, nous décrivons les invariants de Nœther correspondant aux isométries des espaces homogènes pour les surfaces minimales et de courbure moyenne constante. Nous utilisons le formalisme de la géométrie de contact qui permet l'écriture de formules explicites en toute généralité, et nous étudions l'évolution des formes de Nœther sous l'action des isométries des espaces homogènes. Nous calculons ces invariants dans le cas des anneaux déformés de H^2xR, et dans celui des anneaux horizontaux du groupe de Heisenberg
4

Influence de la courbure sur la taille du barycentre convexe dans les variétés différentiables / Curvature influence on the size of convex barycenter in differentiable manifolds

Gorine, Mohammed 24 January 2015 (has links)
Si µ est une mesure de probabilité à support compact dans uns espace vectoriel ou affine de dimension finie, le barycentre (ou centre de gravité) de µ est un point bien défini de l’espace. Mais des difficultés surgissent lorsque l’espace est remplacé par une variété riemannienne M ; dans ce cas, même en se restreignant aux variétés convexes (c’est-à-dire deux dont points quelconques sont toujours joints par une géodésique et une seule) et aux mesures à support fini, il est en général impossible d'assigner à chaque probabilité un barycentre de façon que, d'une part,pour tous λϵ [0; 1] et x et y dans M, le barycentre de µ = (1- λ ) δˣ+ λ δy soit toujours le point γ(λ), sur la géodésique telle que γ (0) = x et γ (1) = y, et que, d'autre part, soit préservée la propriété d'associativité (pour faire une moyenne, on peut commencer par faire des moyennes partielles). Dés que la mesure µ est portée par au moins trois points non tous situées sur une même géodésique, il y a de multiples façons différentes de définir son barycentre comme barycentre de barycentres partiels de barycentres partiels etc., chaque opération élémentaire ne faisant intervenir que deux points. On obtient ainsi tout un ensemble de points de M, les barycentres itérés de µ . Pour des probabilités plus générales, on appelle barycentre convexe de µ l'ensemble b(µ) des points x de M qui sont limites d'une suite (xn), ou chaque xn est un barycentre itéré d'une probabilité µn à support fini, les mesures µn tendant vers µ. / If μ is a probability measure carried on a small in a finite-dimension vectorial or affine space, the μ- barycenter (center of gravity) is a well-defined point in space. Nevertheless, difficulties arise when space is changed by Riemannian manifold M. In this case, even if we limit to convex manifolds (i.e : when any two points are joined by one geodesic and just one) and to finite-support measures, it’s, in general impossible to attribute a barycenter to each probability, in such a way, on one hand, whetever λϵ [0; 1] and x and y in M, the barycenter of µ = (1- λ ) δˣ+ λ δy will be always the point γ(λ) of the geodesic such that γ (0) = x et γ (1) =y, and on another hand, the associative property will be maintained (to make a mean, we can begin by doing partial means). Once the measure μ is carried by at least three points which are not all localed on the same geodesic, there are different manners to define its barycenter as one of partial barycenters of partial barycenters and so on, in which each elementary operation includes only two points. Thus, we get a whole set of set of points of M, the iterated barycenters of μ. For more general probabilities μ, we call convex barycenter of μ, the set b(μ) of points x of M which are limit of sequence (xn), in which each xn is an iterated barycenter of a finite support probability μn, the measure μn tending to μ.
5

Surfaces des espaces homogènes de dimension 3 / Surfaces in 3-dimensional homogeneous spaces

Cartier, Sébastien 15 September 2011 (has links)
Ce mémoire porte sur l'étude des surfaces minimales et de courbure moyenne constante dans les espaces homogènes de dimension 3. Nous établissons les formules de Sym-Bobenko pour les surfaces de courbure moyenne constante 1/2 de H^2xR et minimales du groupe de Heisenberg, et donnons des exemples de construction de telles immersions par la méthode DPW. Nous montrons également que des propriétés de symétrie passent aux correspondances de type surfaces sœurs et cousines, ce qui entraîne l'existence de graphes entiers de courbure moyenne constante 1/2 à bout vertical dans H^2xR qui ne sont pas de révolution. Nous reprenons ensuite l'étude des bouts verticaux d'immersions de courbure moyenne constante 1/2 dans H^2xR. Nous munissons une famille de graphes entiers d'une structure de variété lisse et en déduisons un analogue pour H^2xR d'un théorème de A. E. Treibergs pour l'espace de Minkowski. Nous nous intéressons également aux déformations des anneaux de révolution. Une conséquence directe est l'existence d'anneaux immergés qui ne sont pas de révolution. Nous construisons notamment des anneaux dont les bouts n'ont pas le même axe. Enfin, nous décrivons les invariants de Nœther correspondant aux isométries des espaces homogènes pour les surfaces minimales et de courbure moyenne constante. Nous utilisons le formalisme de la géométrie de contact qui permet l'écriture de formules explicites en toute généralité, et nous étudions l'évolution des formes de Nœther sous l'action des isométries des espaces homogènes. Nous calculons ces invariants dans le cas des anneaux déformés de H^2xR, et dans celui des anneaux horizontaux du groupe de Heisenberg / The present dissertation deals with the study of minimal and constant mean curvature surfaces in 3-dimensional homogeneous spaces. In a first part, we establish Sym-Bobenko formulæ for constant mean curvature 1/2 surfaces in H^2xR and minimal surfaces in the Heisenberg group, and give examples of construction of such immersions using the DPW method. We also show that certain symmetry properties are shared by sister or cousin surfaces, which implies the existence non rotational entire graphs of constant mean curvature 1/2 in H^2xR with a vertical end.In a second part, we treat in more details the study of vertical ends of constant mean curvature 1/2 immersions in H^2xR. We endow a particular family entire graphs with a structure of smooth manifold and deduce an analogue in H^2xR to a theorem by A. E. Treibergs in the Minkowski space. We are also interested in deforming rotational annuli. A direct consequence is the existence of immersed non rotational annuli, and in particular we construct annuli with ends that do not have the same axis. Finally, we describe the Nœther invariants corresponding to isometries of the ambient homogeneous space for minimal and constant mean curvature surfaces. To do so, we use the formalism of contact geometry which allows general and explicit formulæ. We then study the evolution of Nœther form under the action of isometries in homogeneous spaces. We compute these invariants in the case of deformed annuli in H^2xR, and in the case of horizontal annuli in Heisenberg group
6

Sous-variétés spéciales des espaces homogènes / Special subvarieties of homogeneous spaces

Benedetti, Vladimiro 20 June 2018 (has links)
Le but de cette thèse est de construire de nouvelles variétés algébriques complexes de Fano et à canonique triviale dans les espaces homogènes et d'analyser leur géométrie. On commence en construisant les variétés spéciales comme lieux de zéros de fibrés homogènes dans les grassmanniennes généralisées. On donne une complète classification en dimension 4. On prouve que les uniques variétés de dimension 4 hyper-Kahleriennes ainsi construites sont les exemples de Beauville-Donagi et Debarre-Voisin. Le même résultat vaut dans les grassmanniennes ordinaires en toute dimension quand le fibré est irréductible. Ensuite on utilise les lieux de dégénérescence orbitaux (ODL), qui généralisent les lieux de dégénérescence classiques, pour construire d'autres variétés. On rappelle les propriétés basiques des ODL, qu'on définit à partir d'une adhérence d'orbite. On construit trois schémas de Hilbert de deux points sur une K3 comme ODL, et beaucoup d'autres exemples de variétés de Calabi-Yau et de Fano. Puis on étudie les adhérences d'orbites dans les représentations de carquois, et on décrit des effondrements de Kempf pour celles de type A_n et D_4; ceci nous permet de construire davantage de variétés spéciales comme ODL. Pour finir, on analyse les grassmanniennes bisymplectiques, qui sont des Fano particulières. Elles admettent l'action d'un tore avec un nombre fini de points fixes. On étudie leurs petites déformations. Ensuite, on étudie la cohomologie (équivariante) des grassmanniennes symplectiques, qui est utile pour mieux comprendre la cohomologie des grassmanniennes bisymplectiques. On analyse en détail un cas explicite en dimension 6. / The aim of this thesis is to construct new interesting complex algebraic Fano varieties and varieties with trivial canonical bundle and to analyze their geometry. In the first part we construct special varieties as zero loci of homogeneous bundles inside generalized Grassmannians. We give a complete classification for varieties of small dimension when the bundle is completely reducible. Thus, we prove that the only fourfolds with trivial canonical bundle so constructed which are hyper-Kahler are the examples of Beauville-Donagi and Debarre-Voisin. The same holds in ordinary Grassmannians when the bundle is irreducible in any dimension. In the second part we use orbital degeneracy loci (ODL), which are a generalization of classical degeneracy loci, to construct new varieties. ODL are constructed from a model, which is usually an orbit closure inside a representation. We recall the fundamental properties of ODL. As an illustration of the construction, we construct three Hilbert schemes of two points on a K3 surface as ODL, and many examples of Calabi-Yau and Fano threefolds and fourfolds. Then we study orbit closures inside quiver representations, and we provide crepant Kempf collapsings for those of type A_n, D_4; this allows us to construct some special varieties as ODL.Finally we focus on a particular class of Fano varieties, namely bisymplectic Grassmannians. These varieties admit the action of a torus with a finite number of fixed points. We find the dimension of their moduli space. We then study the equivariant cohomology of symplectic Grassmannians, which turns out to help understanding better that of bisymplectic ones. We analyze in detail the case of dimension 6.

Page generated in 0.0796 seconds