Spelling suggestions: "subject:"érythrone"" "subject:"érythroïde""
1 |
Régulations divergentes du récepteur c-Kit par la TPO et la tétraspanine CD9 : implication dans le contrôle de la balance prolifération / maturation mégacaryocytaire / Divergent regulations of c-Kit receptor by TPO and CD9 in megakaryocytic cells : implication in the dynamic control of the balance proliferation/differentiationChaabouni, Azza 06 October 2015 (has links)
La thrombopoïétine (TPO) favorise successivement la prolifération et la maturation des progéniteurs mégacaryocytaires, soulevant la question du mécanisme expliquant cette dualité d'action. La signalisation SCF/ c-Kit est essentielle pour la prolifération de tous les progéniteurs hématopoïétiques, alors que l'extinction de l'expression du récepteur c-Kit est requise pour l'engagement en différenciation terminale. Réciproquement, l'équipe a montré que la stimulation de la voie Notch affecte une sous-population de progéniteurs bipotents érythro-mégacaryocytaires exprimant fortement CD9 (tétraspanine induite durant la maturation mégacaryocytaire) et favorise la reprise de leurs divisions au détriment de leur différenciation mégacaryocytaire terminale. Cet effet de la voie Notch s'accompagne d'une augmentation de l'expression de c-Kit. Ces observations m'ont conduite à m'intéresser aux mécanismes de régulation de c-Kit par la TPO en m'appuyant sur un modèle de progéniteurs bipotents immortalisés et dont la prolifération est strictement dépendante de la TPO (cellules G1ME). Les travaux réalisés durant ma thèse m'ont permis d'établir que (i) La stimulation des cellules G1ME par le ligand de Notch DLL1 favorise l'expression de c-Kit et réprime celle de CD9 (ii) L'activation inattendue de c-Kit par la TPO contribue à la prolifération (iii) c-Kit contribue activement à restreindre la polyploïdisation des cellules G1ME en présence de TPO (iv) La tétraspanine CD9 elle-même réprime l'expression de c-Kit à la membrane. Sur la base de ces résultats, nous proposons le modèle selon lequel, la TPO participerait à la fois à la prolifération des progéniteurs du fait de sa capacité à activer c-Kit, mais contribue aussi à l'augmentation de l'expression de CD9 qui en atteignant un seuil suffisant conduit à l'extinction de l'expression de c-Kit à la surface, entrainant alors l'arrêt des divisions et la différenciation mégacaryocytaire terminale / The Thrombopoietin (TPO) favors both the proliferation and the maturation of megakaryocytic progenitors, raising the question of the molecular mechanism explaining its dual function. SCF/ c-Kit signaling is essential for all hematopoietic progenitors amplification, whereas terminal differentiation requires the extinction of c-Kit receptor expression. Reciprocally, we evidenced in our team that Notch stimulation enables the induction of c-Kit expression and act on a particular subpopulation of bipotent erythro-megakaryocytic progenitors highly expressing the tetraspanin CD9 (induced during megakaryocytic maturation) and favors their re-entry in a cycling state by blocking their megakaryocytic maturation. These observations lead to the investigation of the molecular mechanism of c-Kit regulation by TPO in a cellular model of bipotent progenitors immortalized and dependent on TPO, the G1ME cells. During my thesis, I evidenced that: i) Notch stimulation induces the expression of c-Kit while repressing CD9 expression; ii) Surprisingly TPO is able to activate c-Kit allowing its contribution to cell proliferation; iii) c-Kit also represses megakaryocytic polyploidization (endomitosis characterizing megakaryocytic maturation) of G1ME cells; iv) The tetraspanin CD9 represses the expression of c-Kit. The ensemble of these data allows us to propose the following model wherein TPO activates c-Kit allowing the proliferation of megakaryocytic progenitors, while concomitantly induces the expression of the tetraspanin CD9 that will reach a sufficient level to provoke the extinction of c-Kit expression at the cell surface, thus enabling the arrest of cell cycling progress and the engagement into terminal megakaryocytic maturation
|
2 |
Etude de la transcétolase de Geobacillus stearothermophilus et modification de son énantiosélectivité par ingénierie enzymatiqueAbdoul-Zabar, Juliane 10 January 2014 (has links) (PDF)
La transcétolase (TK, EC 2.2.1.1) est une enzyme catalysant la formation de cétoses de configuration D-thréo à partir d'aldéhydes α-hydroxylés (2R), par formation stéréospécifique d'une liaison C-C. L'objectif de ces travaux est d'inverser l'énantiosélectivité de cette enzyme par ingénierie afin d'obtenir des cétoses L-érytho (recherchés pour leurs applications potentielles dans les domaines pharmaceutique et/ou nutritionnel) à partir d'aldéhydes α-hydroxylés (2S). Dans ce but, une TK thermostable (mTKgst) issue de la bactérie thermophile Geobacillus stearothermophillus a d'abord été identifiée et produite. L'étude de sa structure tridimensionnelle a permis d'identifier deux résidus du site actif ayant un rôle potentiel dans l'inversion de son énantiosélectivité : Leu382 et Asp470. Des banques demTKgst mutées ont alors été créées, selon deux stratégies : rationnelle et semi-rationnelle. La première a consisté à muter les deux résidus sélectionnés par mutagenèse par saturation de site, tandis que la seconde a consisté à modifier deux séquences de cinq résidus contigus à aux positions clés, selon la mutagenèse par cassette. Afin d'identifier les mTKgst mutées d'intérêt, un test de criblage à haut-débit a été mis au point, basé sur le suivi pH-métrique de la réaction en présence de rouge de phénol. A l'issue du criblage, le variant mTKgst-L382D/D470S a été mis en évidence. Son activité vis-à-vis d'un aldéhyde modèle de configuration (2S) a été augmentée d'un facteur 5 par rapport à l'enzyme sauvage et la perte de l'énantiosélectivité vis-à-vis desaldéhydes (2R) a été confirmée.
|
3 |
Etude de la transcétolase de Geobacillus stearothermophilus et modification de son énantiosélectivité par ingénierie enzymatique / Transketolase from Geobacillus stearothermophilus : characterization and modification of its enantioselectivity by protein engineeringAbdoul-Zabar, Juliane 10 January 2014 (has links)
La transcétolase (TK, EC 2.2.1.1) est une enzyme catalysant la formation de cétoses de configuration D-thréo à partir d’aldéhydes α-hydroxylés (2R), par formation stéréospécifique d’une liaison C-C. L’objectif de ces travaux est d’inverser l’énantiosélectivité de cette enzyme par ingénierie afin d’obtenir des cétoses L-érytho (recherchés pour leurs applications potentielles dans les domaines pharmaceutique et/ou nutritionnel) à partir d’aldéhydes α-hydroxylés (2S). Dans ce but, une TK thermostable (mTKgst) issue de la bactérie thermophile Geobacillus stearothermophillus a d’abord été identifiée et produite. L’étude de sa structure tridimensionnelle a permis d’identifier deux résidus du site actif ayant un rôle potentiel dans l’inversion de son énantiosélectivité : Leu382 et Asp470. Des banques demTKgst mutées ont alors été créées, selon deux stratégies : rationnelle et semi-rationnelle. La première a consisté à muter les deux résidus sélectionnés par mutagenèse par saturation de site, tandis que la seconde a consisté à modifier deux séquences de cinq résidus contigus à aux positions clés, selon la mutagenèse par cassette. Afin d’identifier les mTKgst mutées d’intérêt, un test de criblage à haut-débit a été mis au point, basé sur le suivi pH-métrique de la réaction en présence de rouge de phénol. A l’issue du criblage, le variant mTKgst-L382D/D470S a été mis en évidence. Son activité vis-à-vis d’un aldéhyde modèle de configuration (2S) a été augmentée d’un facteur 5 par rapport à l’enzyme sauvage et la perte de l’énantiosélectivité vis-à-vis desaldéhydes (2R) a été confirmée. / Transketolase (TK, EC 2.2.1.1) catalyzes the formation of D-threo ketoses from (2R)-α-hydroxyaldehydes by the stereospecific formation of a C-C bond. Our aim was to invert the enantioselectivity of TK by protein engineering in order to obtain L-erytho ketoses (sought after for their potential pharmaceutical and/or nutritional applications) from (2S)-α-hydroxyaldehydes. For that purpose, a thermostable TK from thermophilic bacterium Geobacillus stearothermophilus (mTKgst) has been identified and overexpressed. After the study of the 3D-structure of mTKgst, two residues located in its active site (Leu382 and Asp470) were selected as mutation targets for the inversion of the enzyme’s enantioselectivity. Both rational and semi-rational approaches were considered for the construction of the mutant mTKgst libraries. In the former, the two residues were modified by site-saturation mutagenesis. In the latter, short sequences of five amino acids, neighboring target ones, were modified using a cassette mutagenesis technique. A novel continuous pH-based assay has been developed for the high-throughput screening of the mTKgst libraries, using phenol red as pH indicator. The screening revealed mTKgst-L382D/D470S as the top mutant, showing a 5-fold activity improvement towards a model (2S)-hydroxyaldehyde and the loss of enantioselectivity towards the (2R)-aldehyde.
|
Page generated in 0.0358 seconds