• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthèse et caractérisation physico-chimique de matériaux géopolymères. Application : cinétique de minéralisation de géopolymères et du biomatériau CaCO3 synthétique

DERRIEN, Anne-Cécile 08 October 2004 (has links) (PDF)
Dans le domaine de la chirurgie orthopédique ou maxillo-faciale, les praticiens sont confrontés à des pertes de substance osseuse qui nécessitent l'utilisation de matériaux de comblement (ou de substitution). L'utilisation de biomatériaux synthétiques (dont la disponibilité est très importante) permet de limiter les réponses immunitaires. Dans ce travail nous nous intéressons à deux matériaux : les géopolymères et le carbonate de calcium synthétique sous forme d'aragonite pure. Dans le domaine des biomatériaux de comblement, l'optimisation du compromis entre le pourcentage de porosité et les propriétés mécaniques (voisines de celles de l'os spongieux) favorise l'ostéointégration et la tenue des implants. Cette observation nous a conduit à étudier des aluminosilicates de la famille des géopolymères définis par un rapport molaire Si/ Al = 21. Les aluminosilicates synthétisés ont été associés à des phosphates de calcium : hydroxyapatite (HA), phosphate tri-calcique (TCP) et biphasique. Après traitement thermique à 500°C, les géopolymères présentent des valeurs de pH voisines de 7 ainsi qu'un bon compromis porosité/ contrainte à la rupture (en compression). Pour le CaCO3, notre laboratoire de recherches a mis au point la synthèse du carbonate de calcium sous forme d'aragonite pure. Ces matériaux ont fait l'objet d'études in vitro et in vivo afin d'évaluer leur potentiel pour une utilisation comme biomatériaux. Les cinétiques de minéralisation des implants géopolymères et du biomatériau CaCO3 ont été étudiées par PIXE (Proton Induced X-Ray Emission) et par NAA (Neutron Activation Analysis). Les résultats obtenus pour le CaCO3 par ces deux méthodes montrent un comportement in vivo similaire à celui d'un TCP utilisé comme référence (travail réalisé avec l'aide de l'ANVAR Bretagne). Les premières études in vivo réalisées sur les géopolymères ont montré que ces derniers sont ostéointégrés. Dès le délai de 1 mois, les porosités externes des implants sont colonisées par de l'os néoformé. La cicatrisation en surface des matériaux est totale à 3 mois. Les analyses par PIXE des implants confirment la consolidation de l'interface dès le délai de 1 mois.

Page generated in 0.0909 seconds