Spelling suggestions: "subject:"crystallin"" "subject:"αbcrystallin""
1 |
Endothelial activation and inflammation in the tumor microenvironmentHuang, Hua January 2015 (has links)
Tumors are composed not only of malignant cells, but also of various types of normal cells, including vascular cells and infiltrating immune cells, which drive tumor development and progression. The tumor vasculature is abnormal and dysfunctional due to sustained tumor angiogenesis driven by high levels of pro-angiogenic factors. Proteins differentially expressed in tumor vessels affect vascular function and the tumor microenvironment and may serve as targets for therapy. The tumor is also a site of sustained chronic inflammation. The recruitment and activation of inflammatory cells significantly influence tumor progression and regression. Targeting molecules regulating tumor angiogenesis and inflammation in the tumor microenvironment is therefore a promising strategy for the treatment of cancer. This thesis is aiming to understand and investigate the molecular regulation of these two processes in tumors. αB-crystallin is a heat shock protein previously proposed as a target for cancer therapy due to its role in increasing survival of tumor cells and enhancing tumor angiogenesis. In this thesis, we demonstrate a novel role of αB-crystallin in limiting expansion of CD11b+Gr1+ immature myeloid cells in pathological conditions, including tumor development. In addition, we show that αB-crystallin regulates leukocyte recruitment by promoting expression of adhesion molecules ICAM-1, VCAM-1 and E-selectin during TNF-α-induced endothelial activation. Therefore, targeting of αB-crystallin may influence tumor inflammation by regulating immature myeloid cell expansion and leukocyte recruitment. Abnormal, dysfunctional vessels are characteristic of glioblastomas, which are aggressive malignant brain tumors. We have identified the orphan G-protein coupled receptor ELTD1 as highly expressed in glioblastoma vessel and investigated its role in tumor angiogenesis. Interestingly, deficiency of ELTD1 was associated with increased growth of orthotopic GL261 glioma and T241 fibrosarcoma, but did not affect vessel density in any model. Further investigation is warranted to evaluate whether ELTD1 serves a suitable vascular target for glioblastoma treatment. Anti-angiogenic drugs targeting VEGF signaling is widely used in the clinic for various types of cancer. However, the influences of anti-angiogenic treatment on tumor inflammation have not been thoroughly investigated. We demonstrate that VEGF inhibits TNF-α-induced endothelial activation by repressing NF-κB activation and expression of chemokines involved in T-cell recruitment. Sunitinib, a small molecule kinase inhibitor targeting VEGF/VEGFR2 signaling increased expression of chemokines CXCL10, CXCL11, and enhanced T-lymphocyte infiltration into tumors. Our study suggests that anti-angiogenic therapy may improve immunotherapy by enhancing endothelial activation and facilitating immune cell infiltration into tumors.
|
2 |
A CryAB Interactome Reveals Clientele Specificity and Dysfunction of Mutants Associated with Human DiseaseHoopes, Whitney Katherine 01 November 2016 (has links)
Small Heat Shock Proteins (sHSP) are critical molecular chaperones that function to maintain protein homeostasis (proteostasis) and prevent the aggregation of other proteins during cellular stress. Any disruption in the process of proteostasis can lead to prevalent diseases ranging from cancer and cataract to cardiovascular and Alzheimer's disease. CryAB (αB-crystallin, HspB5) is one of ten known human sHSP that is abundant in the lens, skeletal, and cardiac muscle. This protein is required for cardiac function and muscle cell integrity. When the cell experiences physiological stress, including heat shock, CryAB moves to the cytoskeleton to act as a chaperone and prevent aggregation of its protein clientele. This research is designed to investigate the molecular role of CryAB in cell proteostasis through the identification of putative protein clientele and chaperone activity analysis. We have identified over twenty CryAB-binding partners through combined yeast two-hybrid (Y2H) and co-purification approaches, including interactions with myofibril proteins. Previously reported disease-associated CryAB missense variants were analyzed in comparison to wild type CryAB through Y2H binding assays. The characterization of the similarities and differences in binding specificities of these variants provide a foundation to better understand the chaperone pathways of CryAB and how these changes in molecular function result in the development of disparate diseases such as cataract, cancer, and various myopathies.
|
3 |
The muscle cytoskeleton of mice and men : Structural remodelling in desmin myopathiesCarlsson, Lena January 2001 (has links)
The muscle fibre cytoskeleton of skeletal and heart muscle cells is composed mainly of intermediate filaments (IFs), that surround the myofibrils and connect the peripheral myofibrils with the sarcolemma and the nuclear membrane. Desmin is the first muscle specific IF protein to be produced in developing muscles and is the main IF protein in mature muscles. In skeletal muscle, desmin is particularly abundant at myotendinous and neuromuscular junctions. In the heart an increased amount of desmin is found at intercalated discs and in Purkinje fibres of the conduction system. Interactions between the IFs themselves, and between IFs and other structures such as Z-discs and the sarcolemma, are mediated by intermediate filament associated proteins (IFAPs). A transgenic mice model, which lacks the desmin gene have been developed to study the function of desmin. In these mice, morphological abnormalities are observed in both heart and skeletal muscles. Similar defects have been observed in human myopathies, caused by different mutations in the desmin gene. In the present thesis, skeletal and heart muscles of both wild type and desmin knock-out (K/O) mice have been investigated. Furthermore the cytoskeletal organisation in skeletal muscles from human controls and from a patient with desmin myopathy was examined. In the desmin K/O mice, no morphological alterations were observed during embryogenesis. These mice postnatally developed a cardiomyopathy and a muscle dystrophy in highly used skeletal muscles. Ruptures of the sarcolemma appear to be the primary event leading to muscle degeneration and fibrosis both in cardiac and affected skeletal muscles. In the heart the muscle degeneration gave rise to calcifications, whereas in skeletal muscles regeneration of affected muscle was seen. In mature wild type mice, the IF proteins synemin and paranemin, and the IFAP plectin were present together with desmin at the myofibrillar Z-discs, the sarcolemma, the neuromuscular junctions and the myotendinous junctions. Nestin was only found in these junctional regions. In desmin K/O mice, all four proteins were detected at neuromuscular and myotendinous junctions. The normal network of synemin and paranemin were not observed, whereas the distribution of plectin was preserved. In normal human muscles, synemin, paranemin, plectin and αB-crystallin were colocalised with desmin in between the myofibrils, at the sarcolemma and at myotendinous and neuromuscular junctions. In the human desmin myopathy, the distribution of desmin varied considerably. A normal pattern was seen in some fibres areas, whereas other regions either contained large subsarcolemmal and intermyofibrillar accumulations of desmin or totally lacked desmin. Nestin, synemin, paranemin, plectin and αB-crystallin also exhibited an abnormal distribution. They were often aggregated in the areas that contained accumulations of desmin. In cultured satellite cells from the patient, a normal network of desmin was present in early passages, whereas aggragates of desmin occurred upon further culturing. In the latter, also the nestin network was disrupted, whereas vimentin showed a normal pattern. αB-crystallin was only present in cells with a disrupted desmin network. Plectin was present in a subset of cells, irrespective of whether desmin was aggregated or showed a normal network. From the present study it can be concluded that an intact desmin network is needed to maintain the integrity of muscle fibres. Desmin may be an important component in the assembly of proteins, which connect the extrasarcomeric cytoskeleton with the extracellular matrix.
|
4 |
Rôle de la petite protéine de choc thermique alphaB crystallin dans la fibrogénèse pulmonaire et son implication dans la voie de signalisation du transforming growth factor - béta1 / Role of the small heat shock protein alphaB-crystallin in pulmonary fibrosis and its implication in the signaling pathway of the Transforming Growth Factor béta1Bellaye, Pierre-Simon 15 November 2013 (has links)
La fibrose pulmonaire idiopathique (FPI) est de pronostic sombre et sans traitement efficace. Elle est caractérisée par un début sous pleural et la présence de myofibroblastes responsables de la synthèse excessive de la matrice extracellulaire. La voie de signalisation du Transforming Growth Factor (TGF)-β1, facteur clé de la genèse de la fibrose et sa progression, passe par les Smads, notamment Smad4. Le TGF-β1 induit la différenciation des fibroblastes pulmonaires et des cellules épithéliales et mésothéliales en myofibroblastes. AB-crystallin est une protéine de choc thermique surexprimée dans la fibrose du foie, du rein et la fibrose vasculaire. Elle peut être induite par le TGF-β1. Dans ce travail, nous avons étudié le rôle d’αB-crystallin dans la fibrose pleurale et pulmonaire. Nous montrons qu’αB-crystallin est surexprimée dans les poumons et la plèvre de patients atteints de FPI. In vivo, dans trois modèles de fibrose pulmonaire (bléomycine, surexpression de TGF-β1 ou d’IL-1β) les souris KO pour αB-crystallin sont protégées de la fibrose avec une inhibition de la voie du TGF-β. In vitro, dans les cellules épithéliales, mésothéliales ou les fibroblastes, αB-crystallin augmente la localisation nucléaire de Smad4. En interagissant avec TIF1γ, responsable de l’export nucléaire de Smad4, elle favorise la séquestration nucléaire de Smad4 et son activité pro-fibrosante. Au contraire, son inhibition permet la formation du complexe Smad4/TIF1γ et l’export nucléaire de Smad4 inhibant son activité. Ce travail montre l’importance d’αB-crystallin dans la fibrose pleuro-pulmonaire et son rôle sur la voie du TGF-. AB-crystallin pourrait être une cible thérapeutique de la FPI. / Idiopathic pulmonary fibrosis (IPF) has no effective current treatment. It is characterized by a sub-pleural onset and the presence of myofibroblasts, responsible for the excessive extracellular matrix synthesis. Transforming Growth Factor (TGF)-β1 is considered as the major profibrotic cytokine. Its signaling pathway occurs through the Smads proteins, including Smad4. TGF-β1 allows the differentiation of lung fibroblasts and epithelial and mesothelial cells into myofibroblasts. AB-crystallin is a small heat shock protein overexpressed in liver, renal and vascular fibrosis and can be induced by TGF-β1. In this study, we assessed the role of αB-crystallin in pleural and pulmonary fibrosis. We show that αB-crystallin is overexpressed in the lung and the pleura of IPF patients. In vivo, in three pulmonary fibrosis models (bleomycin, TGF-β1 or IL-1β overexpression) αB-crystallin KO mice are protected from fibrosis with an inhibition of the TGF-β pathway. In vitro, in epithelial and mesothelial cells or fibroblasts, αB-crystallin increases Smad4 nuclear localization. Interacting with TIF1γ, responsible for the nuclear export of Smad4, it promotes the nuclear sequestration of Smad4 and thus its profibrotic activity. Instead, αB-crystallin inhibition allows the formation of the Smad4/TIF1γ complex and promotes Smad4 nuclear export an profibrotic activity. This work shows the importance of αB-crystallin in pleuro-pulmonary fibrosis and its role on the TGF-β1 pathway. AB-crystallin appears as a putative therapeutic target for IPF.
|
5 |
Molekulare Zellstressmechanismen bei der hereditären Einschlusskörpermyopathie / Molecular cell stress mechanisms in hereditary inclusion body myopathyFischer, Charlotte Viola 05 June 2012 (has links)
No description available.
|
Page generated in 0.0335 seconds