• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ανάλυση οστών με χρήση φασματοσκοπίας Raman

Καλονάκης, Κωνσταντίνος 12 February 2008 (has links)
Περίπου το 60-70 % της οστεϊκής μάζας αποτελείται από ανόργανα μεταλλικά άλατα και το υπόλοιπο είναι οργανικό υπόστρωμα και νερό. Το κύριο ανόργανο συστατικό είναι ένα μη-στοιχειομετρικό ανάλογο του υδροξυαπατίτη, Ca10(PO4)6(OH)2, (BioHAp) o οποίος απαντάται στην φύση και η οργανική φάση είναι κυρίως (90%) κολλαγόνο τύπου I (COL) ενώ το υπόλοιπο 10 % απαρτίζεται από μια ποικιλία ενώσεων όπως γλυκοπρωτεΐνες, λιπίδια και ένζυμα. Η μελέτη των οστών ως προς της χημική τους σύσταση μπορεί να δώσει χρήσιμα στοιχεία σχετικά με τις ασθένειες των οστών όπως οστεοπόρωση, οστεοπέτρωση, οστεομαλακία, κλπ. αλλά και να βοηθήσει στην αξιόπιστη διάγνωσή τους. Παραδοσιακές αναλυτικές τεχνικές έχουν χρησιμοποιηθεί για την ανάλυση της χημικής σύστασης των οστών, όπως είναι η ηλεκτρονική μικροσκοπία, η περιθλασιμετρία ακτίνων Χ αλλά και η κλασική χημική ανάλυση. Η χρήση αυτών των τεχνικών έχει αποδειχτεί χρονοβόρα, δύσχρηστη και επιπλέον τις περισσότερες φορές είναι καταστρεπτικές για το δείγμα. Η ιδανική αναλυτική τεχνική θα ήταν αυτή που θα απαιτούσε την ελάχιστη προετοιμασία των δειγμάτων χωρίς να υπάρχουν απώλειες στην ποιότητα των πληροφοριών που συλλέγονται από αυτή. Γι’ αυτούς τους λόγους, η φασματοσκοπία Raman θεωρείται ένα πολύ χρήσιμο εργαλείο για τη «χαρτογράφηση» και μελέτη της χημικής σύστασης των οστών. Στην παρούσα εργασία διερευνήθηκε αν η φασματοσκοπία Raman, μια μη καταστροφική δονητική τεχνική με δυνατότητα για σημείο-προς-σημείο ανάλυση ενός υλικού, μπορεί να χρησιμοποιηθεί για αυτό το σκοπό. Από κνημιαία βοοειδή οστά λήφθηκαν φάσματα Raman από το συμπαγές (cortical) και από το σπογγώδες (trabecular) τμήμα του οστού. Για τη μελέτη χρησιμοποιήθηκαν οι χαρακτηριστικές Raman ενεργές δονήσεις στα 960 cm-1 (ν1 PO4 3-) και 2939 cm-1 ν(CH2) για το βιοαπατίτη (BioHAp) και το κολλαγόνο (Col), αντίστοιχα. Τα φάσματα από το συμπαγές και το σπογγώδες τμήμα δεν ήταν άμεσα συγκρίσιμα λόγω της ισχυρής παρουσίας φωσφολιπιδίων και άλλων ουσιών του μυελού των οστών οι οποίες βρίσκονταν στο δικτυωτό τμήμα του οστού. Αναπτύχθηκε πρωτόκολλο απομάκρυνσής τους χωρίς να αλλοιωθεί χημικά το κολλάγονο ή ο βιο-απατίτης, το οποίο διαπιστώθηκε με τηνανάπτυξη πρωτοκόλλων απομόνωσης του βιο-απατίτη και του κολλαγόνου αντίστοιχα. Μετά τον καθαρισμό, λήφθηκε ξανά το φάσμα Raman και χρησιμοποιώντας τους λόγους των δονήσεων BioHAp/Col βρέθηκε ότι ο βιο-απατίτης ήταν περισσότερος στο συμπαγές τμήμα από ότι στο σπογγώδες σε σχέση με το κολλαγόνο. Για την επιβεβαίωση των παραπάνω αποτελεσμάτων μετρήθηκε το ασβέστιο και τα φωσφορικά στα ίδια δείγματα χρησιμοποιώντας τη φασματοσκοπία ατομικής απορρόφησης με χρήση της μεθόδου των σταθερών προσθηκών και τη φασματοφωτομετρία υπεριώδους-ορατού, αντίστοιχα. Τα αποτελέσματα από τις δύο παραπάνω τεχνικές επιβεβαίωσαν ότι το ποσοστό βιο-απατίτη στα συμπαγή οστά είναι μεγαλύτερο σε σχέση με τα σπογγώδη. / Bone is a composite formed by the mineralization of an organic matrix (largely collagen) by the nucleation and growth of a mineral highly resembling calcium hydroxyapatite, Ca10(PO4)6(OH)2, (BioHAp) within the matrix. Seventy percent of mature bone is consisted of the inorganic phase while the organic matrix and water accomplish the rest. The organic phase is predominantly (90%) composed of collagen type I (Col) while a range of other substances such as glycosaminoglycans, glycoproteins, lipids, peptides and enzymes, contribute only to the remaining 10%. Knowledge of the BioHap/Col ratio can permit reliable diagnosis of bone diseases such as osteoporosis, osteopetrosis and osteomalacia. Traditional tools used in assessing the chemical composition of bone include electron microscopy, X-ray diffraction and wet chemical analysis. Usage of such techniques has been proved time-consuming and cumbersome. Furthermore, during the application of these techniques the tissue is exposed to stresses that alter its structure and/or composition. The ideal analytical tool would be one in which minimal tissue preparation is required, whilst allowing no loss of the amount and quality of information derived from the technique. For these reasons the technique of Fourier transform Raman spectroscopy was utilized. In this work Raman spectroscopy, a nondestructive vibrational technique, which permits point-by-point analysis (“mapping”) of a specimen, was applied as a tool for bone chemical analysis. Raman spectra of the cortical and trabecular part of shinbones were recorded. The characteristic Raman vibrations at 960 (v1 PO4 3-) and 2939 cm-1 v(CH2) for BioHAp and collagen, respectively, were used. In order to avoid overlapping of the Raman bands before recording the spectra a sequestration protocol for cleaning the bones from the lipids and the other substances of bone marrow was developed and applied. In order to testify it, two more protocols of isolation bio-apatite and collagen were developed and applied respectively. It was found that the ratio of the Raman intensities BioHAp/Col for the trabecular bone to be lower than the cortical one. For verification purposes the concentrations of calcium and phosphates in the same samples were determined using atomic absorption spectroscopy and the UV-Vis spectroscopy, respectively. It was found that indeed the percentage of bio-apatite in cortical bones is larger than in the trabecular bones.
2

Μελέτη της ποιότητας ανθρώπινων γνάθων με φασματοσκοπία Raman

Κουβαριτάκη, Σοφία 02 April 2014 (has links)
Το οστό είναι ένα βιογενές υλικό, το οποίο συνίσταται από μια ανόργανη φάση, το βιοαπατίτη (~70%) και την οργανική φάση (~30%). Η οργανική φάση αποτελείται από ίνες κολλαγόνου τύπου Ι (οι οποίες αποτελούν το 90% της ολικής πρωτεΐνης του οστού) και πολυάριθμες μη κολλαγονούχες πρωτεΐνες (οι οποίες αποτελούν το υπόλοιπο 10% της ολικής πρωτεΐνης του οστού). Το κολλαγόνο τύπου Ι είναι μια εξαιρετικά ινώδης πρωτεΐνη με σταυροδεσμούς, που προσδίδει στο οστό μηχανικές και βιοχημικές ιδιότητες. Οι κρύσταλλοι του βιοαπατίτη, ενός μη στοιχειομετρικού αναλόγου του υδροξυαπατίτη [Ca10(PO4)6(OH)2], βρίσκονται πάνω και μέσα στις ίνες του κολλαγόνου και τείνουν να είναι προσανατολισμένοι στην ίδια κατεύθυνση με αυτές. Ο όρος «ποιότητα οστού» αναφέρεται στο σύνολο των συνθετικών και αρχιτεκτονικών ιδιοτήτων του οστέινου ιστού που καθορίζουν τις ιδιότητες του υλικού και την ικανότητά του να εκτελεί μηχανικές λειτουργίες. Οι μη-επεμβατικές τεχνικές που χρησιμοποιούνται για τη μέτρηση της Οστικής Πυκνότητας (Bone Mineral Density) παρουσιάζουν εγγενή προβλήματα, καθώς η απορρόφηση ακτίνων Χ στις οποίες βασίζονται, είναι ευαίσθητη μόνο στο ανοργανο συστατικό του οστού (βιοαπατίτη) χωρίς να λαμβάνουν υπόψη το οργανικό (κολλαγόνο τύπου Ι). Έτσι, υπάρχει η ανάγκη για ανάπτυξη νέων τεχνικών, όπως η φασματοσκοπία Raman, με την οποία μπορεί να αξιολογηθεί η ποιότητα ενός οστού χρησιμοποιώντας πληροφορίες όπως είναι η ποσότητα και το είδος των σταυροδεσμών του, ο λόγος ανόργανης προς οργανική φάση, η κρυσταλλικότητα του οστού (λόγος ανθρακικών προς φωσφορικά), κ.ά. Στην παρούσα εργασία μελετήθηκε λοιπόν η ποιότητα ανθρώπινων γνάθων με χρήση φασματοσκοπίας Raman. Από τα φάσματα Raman που καταγράφηκαν επελέγησαν οι κορυφές που οφείλονται στο βιοαπατίτη και στο κολλαγόνο. Χρησιμοποιήθηκαν δυο δείκτες, ο λόγος βιοαπατίτη προς κολλαγόνο (Mineral to Matrix Ratio) και ο λόγος των μη αναγώγιμων σταυροδεσμών του κολλαγόνου προς τους αναγώγιμους σταυροδεσμούς του. Στην πρώτη περίπτωση, χρησιμοποιήθηκε ο λόγος των κορυφών στους 960 cm-1 για το βιοαπατίτη και το άθροισμα των κορυφών στους 855, 875 και 920 cm-1 για το κολλαγόνο, οι οποίες αποδίδονται στα αμινοξέα προλίνη και υδροξυπρολίνη του κολλαγόνου [960 cm-1 / (855 cm-1 + 875 cm-1 + 920 cm-1)]. Στην περίπτωση του λόγου των σταυροδεσμών του κολλαγόνου, χρησιμοποιήθηκε η περιοχή του αμιδίου Ι, και συγκεκριμένα οι δονήσεις στους 1658 και 1668 cm-1 για τους μη αναγώγιμους σταυροδεσμούς και οι δονήσεις στους 1680 και 1690 cm-1 για τους αναγώγιμους σταυροδεσμούς του κολλαγόνου [(1658 cm-1 + 1668 cm-1) / (1680 cm-1 + 1690 cm-1)]. Χρησιμοποιώντας αυτούς του δείκτες κατασκευάστηκαν διαγράμματα για την εκτίμηση της ποιότητας των οστών ανά σημείο ή/και ανά περιοχή των γνάθων. Από τη μελέτη προέκυψε ότι κάθε οστό έχει διαφορετικές μηχανικές ιδιότητες οι οποίες ποικίλουν είτε από πλευρά σε πλευρά της γνάθου ή σημειακά. Οι διαφοροποιήσεις αυτές πιθανόν σχετίζονται με τις συνήθειες του ανθρώπου, όπως π.χ. η μάσηση. Επίσης, έγινε προσπάθεια σύγκρισης των αποτελεσμάτων της φασματοσκοπίας Raman με την εγκαθιδρυμένη τεχνική DEXA η οποία αποτελεί το golden standard. Οι τιμές BMD (Bone Mineral Density) που συνελλέγησαν με την DEXA, συγκρίθηκαν με τις τιμές του MMR. Παρόλο που οι δυο τεχνικές αξιολογούν διαφορετικά στοιχεία, φάνηκε ότι υπάρχει συσχέτιση αποτελεσμάτων, καθώς περιοχές υψηλής και χαμηλής οστικής πυκνότητας αντιστοιχούν σε υψηλές και χαμηλές τιμές του MMR, αντίστοιχα. Επιπλέον, μελετήθηκαν και οι μεταβολές που προκλήθηκαν στο κολλαγόνο του οστού λόγω της μη συντήρησης του υλικού. Φάσματα Raman καταγράφηκαν σε τμήμα οστού της ανθρώπινης γνάθου πριν και μετά την ενυδάτωση με ρυθμιστικό διάλυμα PBS (Phosphate Buffer Solution). Οι κορυφές της περιοχής του αμιδίου Ι, χρησιμοποιηθήκαν για τον υπολογισμό των εξής λόγων: 1660 cm-1 / 1690 cm-1, 1658 cm-1 / 1660 cm-1 και (1658 cm-1 + 1668 cm-1) / 1690 cm-1. Από τους παραπάνω λόγους, φαίνεται ότι η κορυφή στα 1658 cm-1 μπορεί να αποδοθεί στην αφυδατωμένη μορφή του κολλαγόνου. Η χρήση του ρυθμιστικού διαλύματος PBS βοηθά στη συντήρηση των οστών χωρίς να επηρεάζει τη δευτεροταγή δομή του κολλαγόνου τους. / Bone is a biogenic material which is distinguished from other forms of connective tissues by the fact that it becomes extremely hard. It consists of an inorganic phase, the bioapatite (~70%), and an organic matrix (~30%). Bone matrix is formed by type I collagen fibers (which make up 90% of the total protein of bone) and numerous non-collagenous proteins. Type I collagen is a highly cross-linked fibrillar protein which enhances the mechanical and biochemical properties of bone. On the other hand, crystals of bioapatite, a non-stoichiometric analogous of hydroxyapatite [Ca10(PO4)6(OH)2] are found on and within the collagen fibers and they tend to be oriented in the same direction as the collagen fibers. The term "bone quality" refers to the ensemble of composition and architectural properties of bone tissue that together determine its material properties and its ability to perform mechanical functions. Non invasive techniques are used to measure Bone Mineral Density (BMD) but they have the disadvantage that they emit X rays and that they are able to account just the mineral matrix of bone (bioapatite) without considering the organic which also contributes to the bone strength. These reasons reinforce the need for finding new methods as Raman spectroscopy, which may be used for the estimation of numerous indicators associated with bone strength, such as the amount and the kind of collagen fibers, the ratio of inorganic/organic phase, crystallinity, bone aging, etc. In this work, Raman spectroscopy was used for the study of the quality of human mandibles. Raman spectra were recorded and the bands attributed to bioapatite and collagen were analyzed. The ratio of bioapatite to collagen (Mineral to Matrix Ratio) and the ratio of non-reducible to reducible collagen cross-links were determined. In the first case, the Mineral to Matrix ratio (MMR) was calculated using the intensities of the bands at 960 cm-1 for bioapatite and 855 cm-1, 875 cm-1 and 920 cm-1 for proline and hydroxyproline, [I (960 cm-1 / (855 cm-1 + 875 cm-1 + 920 cm-1)], while the ratio of collagen cross-links was calculated using the amide I envelope, and specifically, using the intensities of the bands at 1658, 1668 cm-1 for non-reducible cross-links and 1680, 1690 cm-1 for reducible collagen cross-links [I (1658 cm-1 + 1668 cm-1) / (1680 cm-1 + 1690 cm-1)]. These indicators were applied for the construction of diagrams showing the changes of bone quality within the same mandible. It was shown that each bone has different mechanical properties which vary spatially. These variations are possibly related to human habits such as chewing. Comparison of Raman spectroscopy (MMR) results against dual-energy X-ray absorptiometry BMD measurements was also attempted and similarity in their trends was noticed. Finally, the Raman spectral changes induced to mandible collagen due to different storage conditions, such as dehydration, were studied. Raman spectra were recorded from a sample of an as received human mandible and after immersion in PBS (Phosphate Buffer Solution). Sub-bands of amide I envelope were used for the calculation of the ratios 1660 cm-1 / 1690 cm-1, 1658 cm-1 / 1660 cm-1 and (1658 cm-1 + 1668 cm-1) / 1690 cm-1. From these ratios it was found that the presence of the band at 1658 cm-1 was due to dehydration and that immersion in PBS solution can, at least partially, rehydrate the collagen. At the same time, no collagen cross-linking changes were observed.
3

Ανάπτυξη αναλυτικής μεθοδολογίας για την εκτίμηση της ποιότητας των οστών / Development of analytical methodology for the estimation of bone quality

Καραμπάς, Ιωάννης 09 January 2012 (has links)
Το οστό αποτελεί ένα σύνθετο υλικό, χαρακτηριζόμενο από μια πολύπλοκη ιεραρχική δομή. Συνίσταται από τρεις φάσεις, μια ανόργανη, μια οργανική και μια υδατική. Το ανόργανο μέρος του, το οποίο αντιστοιχεί περίπου σε 60-65% της κατά βάρος περιεκτικότητάς του, αποτελείται από ένα χημικό και δομικό ανάλογο του φωσφορικού άλατος υδροξυαπατίτης [Ca10(PO4)6(OH)2], το οποίο γι’ αυτό το λόγο καλείται βιοαπατίτης ή βιολογικός απατίτης. Το οργανικό μέρος αποτελεί περίπου το 30% της κ.β. περιεκτικότητάς του και κυριαρχείται από την παρουσία της πρωτεΐνης κολλαγόνο (τύπου Ι), το ποσοστό της οποίας ανέρχεται σε 90% περίπου της οργανικής φάσης. Το υπόλοιπο τμήμα αυτής καταλαμβάνεται από ένα πλήθος άλλων πρωτεϊνών, οργανικών ενώσεων και κυττάρων. Το εναπομένον 5-10% της μάζας του οστού αποτελείται από νερό. Η σύσταση του οστού και πιο συγκεκριμένα η περιεκτικότητά του σε βιοαπατίτη και κολλαγόνο (των οποίων η συνολική % κ.β. περιεκτικότητα ανέρχεται σε πάνω από 95% επί ξηρού οστού) διαδραματίζει σημαντικό ρόλο στις μηχανικές ιδιότητές του, όπως είναι η αντοχή σε θραύση, η ακαμψία και η ελαστικότητα. Οι μεταβολές των μηχανικών ιδιοτήτων σχετίζονται με παθολογικές καταστάσεις των οστών κατά τις οποίες είναι πολύ πιθανή η εμφάνιση κατάγματος, όπως είναι η οστεοπόρωση –από την οποία πάσχει ένα σημαντικό μέρος του πληθυσμού– αλλά και άλλες λιγότερο συνηθισμένες παθήσεις όπως η οστεομαλακία και η ατελής οστεογένεση. Οι παραπάνω ασθένειες και κυρίως η οστεοπόρωση, διαγιγνώσκονται μέχρι σήμερα με μέτρηση της οστικής πυκνότητας (Bone Mineral Density, BMD). Η συγκεκριμένη όμως παράμετρος υστερεί στην αξιόπιστη πρόβλεψη του κινδύνου εμφάνισης καταγμάτων. Για το λόγο αυτό, η νέα προσέγγιση στο συγκεκριμένο ζήτημα απαιτεί ως διαγνωστικό εργαλείο τη γνώση παραμέτρων που σχετίζονται άμεσα με τις μηχανικές ιδιότητες, ανάγοντας έτσι και τη σύσταση των οστών ως ένα πιθανό αξιόπιστο παράγοντα εκτίμησης του κινδύνου εμφάνισης κατάγματος. Αν και η σύσταση του οστού μπορεί να υπολογιστεί με διάφορες αναλυτικές τεχνικές, η χρήση της φασματοσκοπίας Raman (RS) αποτελεί μια προσέγγιση στο συγκεκριμένο ζήτημα η οποία παρουσιάζει σημαντικά πλεονεκτήματα, όπως είναι η δυνατότητα ταυτόχρονου προσδιορισμού της περιεκτικότητας σε βιοαπατίτη και κολλαγόνο, η ελάχιστη επεξεργασία του προς ανάλυση δείγματος ενώ ήδη έχουν αρχίσει να γίνονται προσπάθειες και για την ανάπτυξη μεθόδου για την in vivo ανάλυση των οστών. Λαμβάνοντας επομένως υπόψη τα σημαντικά πλεονεκτήματά της φασματοσκοπίας Raman και τη σπουδαιότητα της σύστασης στον καθορισμό της ποιότητας του οστού, επιχειρήθηκε η ανάπτυξη μεθοδολογίας για την ποσοτική ανάλυση της περιεκτικότητας των οστών σε βιοαπατίτη και κολλαγόνο με τη βοήθεια της φασματοσκοπίας Raman. Για το σκοπό αυτό, συλλέχθηκαν δείγματα βόειων οστών (από το συμπαγές και το σπογγώδες τμήμα) και αφού πραγματοποιήθηκε χημικός καθαρισμός τους από ξένες οργανικές ενώσεις (λιπίδια, μυελός, κύτταρα), ορισμένα δοκίμια χρησιμοποιήθηκαν για την απομόνωση του κολλαγόνου –κατόπιν διάλυσης του βιοαπατίτη με EDTA– ενώ κάποια άλλα δοκίμια χρησιμοποιήθηκαν για την απομόνωση του βιοαπατίτη –με διάλυση του κολλαγόνου σε υδραζίνη. Στα πλαίσια χαρακτηρισμού των δοκιμίων, μελετήθηκαν οι επιδράσεις που επάγουν η διαδικασία του χημικού καθαρισμού και το πρωτόκολλο απομόνωσης κολλαγόνου στην κρυσταλλική δομή του βιοαπατίτη. Μετρήσεις με τη βοήθεια της περίθλασης ακτίνων Χ (XRD), αποκάλυψαν ότι ενώ ο χημικός καθαρισμός δεν επηρεάζει τη δομή των δοκιμίων ωστόσο, το πρωτόκολλο απομάκρυνσης του κολλαγόνου με υδραζίνη έχει ως συνέπεια την αύξηση της κρυσταλλικότητας και του μεγέθους των κρυσταλλιτών του βιοαπατίτη σε σημαντικό βαθμό. Επιπλέον, από μελέτες με φασματοσκοπία υπερύθρου και XRD προέκυψε ότι η μεταβολή των παραπάνω παραμέτρων οφείλεται στην απομάκρυνση των ιόντων CO32- και HPO42- από τους κρυσταλλίτες του βιοαπατίτη, η οποία προκαλείται από χρήση της υδραζίνης. Μάλιστα προέκυψε ότι όσο μεγαλύτερη είναι η θερμοκρασία της χρησιμοποιούμενης υδραζίνης τόσο μεγαλύτερη είναι η κινητική των μεταβολών που επάγονται στις κρυσταλλογραφικές παραμέτρους του βιοαπατίτη. Αναμιγνύοντας καθορισμένες ποσότητες βιοαπατίτη και κολλαγόνου, παρασκευάστηκαν πρότυπα μίγματα που χρησιμοποιήθηκαν για την κατασκευή ευθειών αναφοράς, για τον προσδιορισμό της σύστασης του οστού ως προς αυτά τα συστατικά. Από τα φάσματα Raman του οστού επιλέχθηκε η ν1 δόνηση των ΡΟ43- του βιοαπατίτη που εμφανίζεται ως μια κορυφή στα 960 cm-1 ως δείκτης της ποσότητάς του ενώ για το κολλαγόνο δοκιμάστηκαν δύο κορυφές, μια στα 1667 cm-1 που ανήκει στη δόνηση του αμιδίου Ι και άλλη μια στα 2941 cm-1 που αποδίδεται στην C-H2 δόνηση. Κατά την ανάλυση που ακολούθησε, χρησιμοποιήθηκαν τόσο τα ύψη όσο και τα εμβαδά κάτω από τις αντίστοιχες κορυφές. Οι λόγοι εντάσεων (εκφραζόμενές από τα ύψη ή τα εμβαδά των κορυφών) των δονήσεων 960 cm-1/1667 cm-1 και 960 cm-1/2941 cm-1 είναι ανάλογοι του λόγου περιεκτικοτήτων σε βιοαπατίτη και κολλαγόνο. Προέκυψαν επομένως τέσσερεις ευθείες αναφοράς. Από αξιολόγηση των συγκεκριμένων ευθειών αναφοράς προέκυψε ότι μεγαλύτερη ακρίβεια στον υπολογισμό του λόγου περιεκτικοτήτων βιοαπατίτη και κολλαγόνου παρουσιάζει αυτή που χρησιμοποιεί το λόγο υψών των κορυφών 960 cm-1/1667 cm-1. Επιπλέον, επιχειρήθηκε η ανάπτυξη ενός νέου μοντέλου βαθμονόμησης με τη χρήση χημειομετρικών μεθόδων και πιο συγκεκριμένα εφαρμόζοντας τον αλγόριθμο PLS, ο οποίος έχει εφαρμοστεί με σημαντική επιτυχία τα τελευταία χρόνια στην ανάλυση φασματοσκοπικών δεδομένων. Επειδή για την ανάπτυξη του νέου μοντέλου χρησιμοποιήθηκε μια μεγάλη περιοχή του φάσματος (από 366 cm-1 ως 1800 cm-1) και όχι μεμονωμένες δονήσεις, αναμένετο μεγαλύτερη ακρίβεια στον υπολογισμό της σύστασης των αγνώστων δειγμάτων. Από τους διάφορους τρόπους κατασκευής μοντέλων ποσοτικής ανάλυσης βιοαπατίτη και κολλαγόνου που αναπτύχθηκαν, αυτό που επέδειξε τα καλύτερα χαρακτηριστικά ήταν εκείνο που τα πειραματικά δεδομένα, πριν την επεξεργασία τους με τον αλγόριθμο PLS, υποβλήθηκαν στον SNV (Standard Normal Variate) μετασχηματισμό. Μετά την επιλογή των βέλτιστων για κάθε μέθοδο μοντέλων, ακολούθησε η αξιολόγησή τους με άλλες τεχνικές. Αρχικά, ποσοτικοποιήθηκε η περιεκτικότητά σε βιοαπατίτη και κολλαγόνο μεγάλου αριθμού δοκιμίων οστών, με τις παραπάνω μεθόδους που βασίζονται στη φασματοσκοπία Raman. Ακολούθως, τα ίδια οστά αναλύθηκαν με τις τεχνικές της φασματομετρίας ατομικής απορρόφησης (AAS) και της θερμοσταθμικής ανάλυσης (TGA) ως προς την περιεκτικότητά τους σε ανόργανη και οργανική φάση. Σύγκριση των αποτελεσμάτων από αυτές τις τεχνικές με τα αντίστοιχα που προέκυψαν από την ανάλυση με φασματοσκοπία Raman, κατέδειξαν μειωμένη ικανότητα πρόβλεψης της περιεκτικότητας σε βιοαπατίτη και κολλαγόνο και για τα δύο μοντέλα που είχαν αναπτυχθεί με βάση τη φασματοσκοπία Raman. Θεωρώντας ως ένα από τους λόγους αποτυχίας των παραπάνω μοντέλων ποσοτικής ανάλυσης την επιλογή της δόνησης του αμιδίου Ι στα 1667 cm-1 ως δείκτη της ποσότητας του κολλαγόνου, επιχειρήθηκε η κατασκευή ενός νέου μοντέλου ποσοτικής ανάλυσης, με την επιλογή διαφορετικών δονήσεων για την ποσοτικοποίηση του κολλαγόνου. Οι κορυφές που χρησιμοποιήθηκαν ήταν αυτές στα 855 και 878 cm-1 οι οποίες ανήκουν σε δονήσεις των αμινοξέων προλίνη και υδροξυπρολίνη αντίστοιχα ενώ, για το βιοαπατίτη χρησιμοποιήθηκε και η κορυφή στα 960 cm-1. Και πάλι αναπτύχθηκαν μοντέλα λαμβάνοντας υπόψη τα ύψη και τα εμβαδά των παραπάνω κορυφών. Τελικά, προέκυψε ότι το βέλτιστο μοντέλο ήταν αυτό στο οποίο ως δείκτης της ποσότητας του κολλαγόνου χρησιμοποιήθηκε το άθροισμα των υψών των κορυφών στα 855 και 878 cm-1. Αξιολόγηση του συγκεκριμένου μοντέλου μέσω της σύγκρισης με τα αποτελέσματα που εξήχθησαν από τις ποσοτικές αναλύσεις με την ατομική απορρόφηση και τη θερμοσταθμική ανάλυση, κατέδειξε ιδιαίτερα ικανοποιητική σύγκλιση των τιμών περιεκτικότητας σε βιοαπατίτη και κολλαγόνο από τις τρεις τεχνικές. Ως εκ’ τούτου, κατέστη δυνατή η δημιουργία ενός μοντέλου ακριβούς πρόβλεψης της σύστασης των οστών ως προς την ανόργανη και την οργανική φάση. Η εξίσωση της καμπύλης αναφοράς που προτείνεται για το σκοπό αυτό είναι η: όπου: Ηi είναι το ύψος της κορυφής του φάσματος Raman στον κυματάριθμο i και ΧΒ, ΧC οι % κ.β. περιεκτικότητες των οστών σε βιοαπατίτη και κολλαγόνο αντίστοιχα / Bone is a composite material characterized by a complicated hierarchical structure. It consists of three phases: inorganic, organic and aqueous. The inorganic is the dominant part accounting 60-65% w/w of bone and is a chemical and structural analogue of the mineral hydroxyapatite [Ca10(PO4)6(OH)2]. It is exactly for this reason that it is called bioapatite or biological apatite. The organic part constitutes about 30% of the weight of bone and its principal component is collagen (type I), which accounts for more than 90% of the weight of the organic phase. Non-collagenous proteins, lipids, cells and other organic substances are also included in the organic part of bone. The remaining 5-10% w/w of bone is water. The composition of bone and particularly the concentrations of bioapatite and collagen (which together exceed 95% w/w of dry bone) play a crucial role in its mechanical properties, including resistance to fracture, stiffness and elasticity. These properties relate to various pathological situations of bone which may cause fractures like osteoporosis –the most frequent metabolic bone disease– osteomalacia, osteogenesis imperfecta and others. For the diagnosis of the above diseases and especially of osteoporosis, measurements of BMD (Bone Mineral Density) is the gold standard. However, nowadays it is a common belief that BMD alone cannot reliably predict the risk of bone fracture. For this reason, a new approach is followed according to which the study of factors that influence the mechanical properties of bone is suggested for diagnostic purposes. Inarguably, the composition of bone appears to be a key factor for the evaluation of risk fracture. Despite the fact that composition of bone has been determined by various analytical techniques, the use of Raman spectroscopy (RS) for this purpose, has been inadequately exploited. The simultaneous analysis of inorganic and organic phase, the minimal or even none requirements for sample preparation and the promising ongoing efforts for the in vivo analysis of tissues, rendered this technique a powerful tool for the study of bones. Taking into account the important advantages of RS and the role of bone composition as a diagnostic parameter, it was attempted to develop a method, based on RS, of quantitative analysis of the composition of bioapatite and collagen in bone. A large number of bovine bone specimens (cortical and trabecular) was collected. Lipids, marrow and the non-collagenous proteins were removed by chemical methods. Some of the specimens were treated with EDTA solutions for the separation of collagen. A second batch of bone specimens was subjected to the removal of organic phase by hydrazine. Afterwards, the effect of chemical purification and of hydrazine treatment on the crystal structure of bioapatite was investigated. X-Ray Diffraction (XRD) measurements revealed that although chemical purification does not have any significant effect, hydrazine treatment induces noteworthy changes of the crystal size and crystallinity of the mineral phase. Further XRD measurements and investigation of bone specimens with infrared spectroscopy unveiled that the observed changes were temperature depended and were due to the removal of CO32- and HPO42- ions from the crystal lattice of bioapatite, caused by hydrazine. A series of standard mixtures was prepared by mixing carefully weighted amounts of the purified bone components and the corresponding calibration curves were constructed. These calibration lines could be used for the quantitative analysis of bone specimens with respect to its content in bioapatite and collagen. The peak at 960 cm-1 of the Raman spectrum of bone was selected as marker of bioapatite (ν1 vibration of ΡΟ43-¬). For collagen two peaks were tested, at 1667 cm-1 (vibration of amide I) and at 2941 cm-1 (vibration of C-H2). For these two peaks both, the height and the integrated areas were used for the construction of the respective calibration curves. Height and area ratios of 960 cm-1/1667 cm-1 and 960 cm-1/2941 cm-1 peaks are proportional to the ratio of mass fraction of bioapatite to collagen. For the models developed, the most accurate was proved to be this one that used the height ratio of 960 cm-1/1667 cm-1 peaks. For comparison reasons, new models were developed based on chemometrics and in particular by using the PLS algorithm. PLS has been proved a powerful method for the analysis of multivariate problems and during the last years there is a growing number of applications in spectroscopy. A broad region of the Raman spectrum was used from 366 cm-1 to 1800 cm-1 and various spectral filters were tested. The best results were obtained for the SNV spectral filter. Following the selection of the optimum model for each of the two different methods of calibration, they were evaluated with the results from other analytical techniques. Various bone specimens were quantified for bioapatite and collagen with the implementation of the developed models and their results were compared with the corresponding results of two other analytical techniques, Atomic Absorption Spectroscopy (AAS) and Thermogravimetric Analysis (TGA). Although analytical results showed good agreement between AAS and TGA, the consensus of the results obtained by RS and that of AAS and TGA was poor. This indicates that the developed methods based on RS were inappropriate. A possible reason for the failure of the above models, which based on RS, could be the selection of amide I vibration for the quantification of collagen. Thus, additional models were constructed using different peaks as collagen markers. The peaks at 855 and 878 cm-1 were selected, which are attributed to vibrations of the amino acids proline and hydroxyproline, respectively. For bioapatite the peak at 960 cm-1 was used. The quantitative analysis was developed using heights and integrated areas of the selected peaks. Comparison between the models showed that the best results were obtained by the model that takes into account the sum of the heights at 855 cm-1 and 878 cm-1. Comparison of this model with the results obtained from AAS and TGA showed excellent agreement with respect to the content of bone specimens in bioapatite and collagen. The calibration equation derived for this model is: where: Hi is the height of the peak at the i wavenumber of the Raman spectrum and ΧΒ, ΧC are the % mass content of bioapatite and collagen in the bone specimens respectively
4

Ο ρόλος της σεργλυκίνης στη ρύθμιση του συμπληρώματος και στην έκφραση των μεταλλοπρωτεϊνασών σε μυελωματικά πλασματοκύτταρα: βιοχημική, μοριακή και κλινικοεργαστηριακή προσέγγιση / Role of serglycin in the regulation of complement system and in the expression of matrix metalloproteinases in myeloma plasma cells: biochemical, molecular and clinical lab approach

Σκλήρης, Αντώνιος 28 February 2013 (has links)
Η σεργλυκίνη (SG) είναι μια πρωτεογλυκάνη που εκφράζεται και εκκρίνεται από το σύνολο σχεδόν των αιμοποιητικών κυττάρων, ενώ αποτελεί την κύρια πρωτεογλυκάνη η οποία εκκρίνεται από τις κυτταρικές σειρές πολλαπλού μυελώματος (ΠΜ). Έχει βρεθεί ότι η SG συμμετέχει στη ρύθμιση πληθώρας παραγόντων που εμπλέκονται σε αντιδράσεις φλεγμονής. Τα αποτελέσματά μας δείχνουν ότι η SG που εκκρίνεται από τα μυελωματικά κύτταρα έχει την ικανότητα να αναστέλλει τόσο την κλασσική όσο και τη λεκτινική οδό του συστήματος του συμπληρώματος, ενώ δε φαίνεται να έχει καμία επίδραση στο εναλλακτικό μονοπάτι. Επιπρόσθετα η SG δεν έχει την ικανότητα να προκαλεί την ενεργοποίηση κάποιου από τα τρία μονοπάτια του συμπληρώματος. Βρέθηκε ότι η ανασταλτική δράση της SG εκδηλώνεται μέσω της αλληλεπίδρασής της με τους παράγοντες C1q και MBL. Οι γλυκοζαμινογλυκανικές (GAGs) αλυσίδες της SG είναι υπεύθυνες για τη δέσμευση με την κολλαγονούχα ουρά του παράγοντα C1q, ενώ στη δέσμευση με την MBL πρωτεΐνη πέρα από τη συμμετοχή των GAG αλυσίδων απαιτείται και ο πρωτεϊνικός κορμός της SG. Επιπλέον βρέθηκε ότι αλυσίδες CS-E ελαττώνουν την ικανότητα δέσμευσης της SG με τα μόρια C1q και MBL. Οι αλληλεπιδράσεις της SG με τον C1q και την MBL βρέθηκε ότι είναι ιοντικού χαρακτήρα και σε αντίθεση με τη δέσμευση της SG με την MBL, που εξαρτάται από την παρουσία των ιόντων Ca2+, η αλληλεπίδραση της SG με τον C1q είναι ανεξάρτητη των ιόντων αυτών. Αν και τα επίπεδα της SG στον ορό των ασθενών με ΠΜ εμφανίζονται αυξημένα σε σχέση με τους φυσιολογικούς μάρτυρες, δεν εντοπίστηκαν στατιστικά σημαντικές διαφορές στην δραστικότητα της κλασσικής και της εναλλακτικής οδού του συμπληρώματος στους ασθενείς με ΠΜ και στους φυσιολογικούς δότες. Ωστόσο ενδιαφέρον αποτελεί το γεγονός ότι στους ασθενείς με ΠΜ τα υψηλά επίπεδα SG στον ορό εμφάνισαν τάση συσχέτισης με ελαττωμένη δραστικότητα της κλασσικής οδού του συμπληρώματος. Επιπρόσθετα, η SG που εκκρίνεται απ τα μυελωματικά πλασματοκύτταρα έχει την ικανότητα να προστατεύει τα κύτταρα αυτά από την επίδραση του συμπληρώματος, μετά την ενεργοποίησή του με τη χρήση φαρμάκων. Φαίνεται ότι και η SG της μεμβράνης των μυελωματικών κυττάρων παρουσιάζει προστατευτική δράση έναντι του συμπληρώματος, μιας και κύτταρα που δεν εκφράζουν SG στην επιφάνειά τους είναι δύο με τρείς φορές περισσότερο ευαίσθητα στη δράση του συμπληρώματος, σε σχέση με κύτταρα που την εκφράζουν. Προτείνουμε ότι τόσο η εκκρινόμενη όσο και η δεσμευμένη στην κυτταρική επιφάνεια SG προστατεύουν τα μυελωματικά πλασματοκύτταρα κατά την ανοσοθεραπεία και συμβάλουν στην επιβίωσή τους. Στην παρούσα μελέτη δείξαμε ότι η SG αλληλεπιδρά με το κολλαγόνο τύπου Ι, την πιο άφθονη μορφή κολλαγόνου στο οστό. Επιπλέον βρέθηκε ότι η SG της κυτταρικής επιφάνειας συμμετέχει στην προσκόλληση των μυελωματικών κυττάρων στο κολλαγόνο τύπου Ι. Η αλληλεπίδραση αυτή φαίνεται ότι επάγει την έκφραση από τα μυελωματικά πλασματοκύτταρα των ΜΜΡ-2 και ΜΜΡ-9. Επιπρόσθετα, υπολογίστηκαν τα επίπεδα των ΜΜΡ-2 και ΜΜΡ-9 στον ορό και στο μυελό ασθενών με ΠΜ. Βρέθηκε ότι στον ορό των ασθενών με ΠΜ τα επίπεδα των δύο ενζύμων εμφανίζονται ελαττωμένα σε σχέση με τα φυσιολογικά δείγματα, ενώ αντίθετα στον μυελό των ασθενών η ΜΜΡ-2 βρέθηκε σημαντικά αυξημένη σε σχέση με τους φυσιολογικούς δότες. Καμία μεταβολή δεν παρατηρήθηκε στα επίπεδα της ΜΜΡ-9. Τέλος τα επίπεδα της ΜΜΡ-2 του μυελού ασθενών με ΠΜ βρέθηκε ότι σχετίζονται τόσο με τα επίπεδα του ενζύμου στον ορό, όσο και με τον δείκτη οστικής απορρόφησης ΝΤx, υποδηλώνοντας τη συμμετοχή της στην παθοβιοχημεία της οστικής νόσου που εμφανίζεται στο ΠΜ. Αντιθέτως καμία συσχέτιση δεν βρέθηκε για την ΜΜΡ-9, δηλώνοντας ότι ίσως το ένζυμο αυτό να εμπλέκεται σε άλλες διεργασίες που επιτελούνται στο ΠΜ. / Serglycin (SG) is a proteoglycan expressed by hematopoietic cells and is constitutively secreted by multiple myeloma (MM) cells. SG participates in the regulation of various inflammatory events. We found that SG secreted by human MM cell lines inhibits both the classical and lectin pathways of complement, without influencing alternative pathway activity. It was also shown that SG could not initiate any activation of the complement system. The inhibitory effect of SG is due to direct interactions with C1q and mannose binding lectin (MBL). C1q-binding is mediated through the glycosaminoglycan moieties of SG, whereas binding to MBL requires the presence of SG protein core. Interactions between SG and C1q as well as MBL are diminished in the presence of chondroitin sulfate type E. In addition, we localized the SGbinding site to the collagen-like stalk of C1q. Interactions between SG and C1q as well as MBL are ionic in character and only the interaction with MBL was found to be partially dependent on the presence of calcium. Although we found the serum levels of SG to be elevated in patients with MM compared to healthy controls, no statistical significant differences were observed for classical and alternative pathway activity in sera between MM patients and healthy donors. Despite that, it is proved that increase levels of SG show a tendency to correlate with decreased levels of classical pathway activity in serum of MM patients. Moreover, we found that SG expressed from myeloma plasma cells protects these cells from complement activation induced by treatment with anti-thymocyte immunoglobulins. It is also demonstrated that SG on the surface of MM cells inhibits complement deposition on the membrane of these cells. Cells which do not express SG on its’ surface are 2-3 times more sensitive to complement attack compared with cells expressing high levels of SG. This might protect myeloma cells during immunotherapy and promote survival of malignant plasma cells. Moreover, it is shown that SG from MM cells is capable to interact with collagen type I, the most abundant collagen in bone. Furthermore, SG is present on the surface of myeloma plasma cells and it is involved in the adhesion of MM cells to collagen type I in bone marrow microenvironment. In addition, it is shown that the interaction of myeloma plasma cells to collagen type I, mediated by cell surface SG, induces expression and secretion of both MMP-2 and MMP-9 from MM cells. Along the process, we have investigated levels of MMP-2 and MMP-9 in serum and marrow of patients with MM. Decreased levels of both MMP-2 and MMP- 9 in serum of MM patients have been observed compared to healthy donors. Instead, MMP-2 was found to be increased in bone marrow of MM patients compared to control samples, while no differences observed for MMP-9. Finally, marrow levels of MMP-2 seem to correlate with serum levels of the enzyme along with a marker of bone resorption, NTx. This might indicate the implication of MMP-2 in the pathogenesis of bone disease in MM. Even though, no correlation of MMP-9 with NTx was observed, proving that MMP-9 may play a significant role in different pathogenetic mechanism occurring in MM.
5

Μελέτη των αλληλεπιδράσεων των γλυκοζαμινογλυκανών με κολλαγόνο τύπου Ι και ΙΙ / Investigation of interactions of glycosaminoglycans with collagen type I and II

Καμηλάρη, Ελένη 27 May 2014 (has links)
Δύο από τα σημαντικότερα δομικά και λειτουργικά βιομόρια του εξωκυττάριου χώρου είναι το κολλαγόνο και οι γλυκοζαμινογλυκάνες (GAGs), ανιοντικοί πολυσακχαρίτες που αποτελούν το βασικό δομικό συστατικό των πρωτεογλυκανών. Οι κύριοι τύποι γλυκοζαμινογλυκανών είναι η θειική χονδροϊτίνη, η θειική δερματάνη, η ηπαρίνη, η θειική ηπαράνη, η θειική κερατάνη και το υαλουρονικό οξύ. Το κολλαγόνο τύπου Ι είναι η πιο άφθονη πρωτεΐνη στους ιστούς των θηλαστικών. Το κολλαγόνο τύπου ΙΙ αποτελεί το κύριο συστατικό του εξωκυττάριου χώρου του αρθρικού χόνδρου και άλλων ιστών. Τα παραπάνω μακρομόρια είναι υπεύθυνα για τη ρύθμιση διαφόρων διεργασιών των κυττάρων τόσο σε φυσιολογικές όσο και σε παθολογικές καταστάσεις, όπως παθήσεις των αρθρώσεων και νεοπλασματικές ασθένειες. Αντικείμενο της παρούσας εργασίας αποτέλεσε η ανάπτυξη μιας μεθοδολογίας για τον προσδιορισμό των αλληλεπιδράσεων μεταξύ γλυκοζαμινογλυκανών και των δύο τύπων κολλαγόνου, η οποία θα συνεισφέρει στη βαθύτερη κατανόηση της βιολογικής τους λειτουργίας. Μερικές από τις τεχνικές που έχουν χρησιμοποιηθεί για το συγκεκριμένο σκοπό είναι η χρωματογραφία συγγένειας, η ηλεκτροφόρηση και η φασματοσκοπία φθορισμού. Η φασματοσκοπία πυρηνικού μαγνητικού συντονισμού (NMR), η περίθλαση ακτίνων-Χ και ο κυκλικός διχρωισμός (Circular Dichroism, CD) προσφέρουν δομικές πληροφορίες για τις αλλαγές στη διαμόρφωση και τα σημεία πρόσδεσης μεταξύ γλυκοζαμινογλυκανών και πρωτεϊνών. Θερμοδυναμικές πληροφορίες για τις αλληλεπιδράσεις πρωτεϊνών-γλυκοζαμινογλυκανών αντλούνται από τη θερμιδομετρία ισόθερμης τιτλοδότησης (Isothermal Titration Calorimetry, ITC), ενώ με την τεχνική της διέγερσης επιφανειακών πλασμονίων (Surface Plasmon Resonance, SPR) μελετώνται η σταθερά σύνδεσης και η σταθερά διάστασης της αλληλεπίδρασης σε πραγματικό χρόνο. Το κυριότερο μειονέκτημα των παραπάνω τεχνικών είναι το ότι δεν προσφέρουν πληροφορίες για χημικούς δεσμούς, ενώ ο χρόνος ανάλυσης είναι μεγάλος και απαιτούνται μεγάλες ποσότητες δειγμάτων. Η τεχνική που χρησιμοποιήθηκε ήταν εκείνη της φασματοσκοπίας micro-Raman, μια μη καταστρεπτική τεχνική, η οποία προσφέρει πληροφορίες για τη χημική δομή του εξεταζόμενου δείγματος, ενώ παράλληλα είναι γρήγορη και ακριβής. Παρασκευάστηκαν δύο είδη μιγμάτων γλυκοζαμινογλυκανών με κολλαγόνο. Στην πρώτη περίπτωση, κολλαγόνο τύπου Ι ή τύπου ΙΙ εμβαπτίστηκε σε διάλυμα θειικής χονδροϊτίνης, ηπαρίνης ή μίγμα τους που παρασκευάστηκε με αναλογία όγκων 1:1. Στη δεύτερη περίπτωση, μίγματα των δύο ουσιών προέκυψαν με ανάμιξη ίσων ποσοτήτων των δύο ουσιών. Τα παραπάνω μίγματα μελετήθηκαν με φασματοσκοπία Raman και με την τεχνική της Διαφορικής Θερμιδομετρίας Σάρωσης (Differential Scanning Calorimetry, DSC) και συγκρίθηκαν με τα φάσματα των προτύπων ουσιών. Κάθε ουσία έχει ένα χαρακτηριστικό φάσμα Raman, η ερμηνεία του οποίου οδήγησε στην ταυτοποίηση χαρακτηριστικών ομάδων των μορίων, όπως οι δεσμοί C-OH, οι θειικές ομάδες (O-SO3-, N-SO3-), η Ν-ακετυλομάδα, οι δεσμοί C=O και οι δεσμοί C-Ν. Οι φασματικές περιοχές που παρουσιάζουν τα πιο έντονα χαρακτηριστικά στα φάσματα Raman των μιγμάτων GAG-κολλαγόνου είναι οι εξής: 800-920 cm-1, 900-1000 cm-1 και 980-1170 cm-1. Όσον αφορά στην τελευταία φασματική περιοχή, παρατηρήθηκε σημαντική μετατόπιση της χαρακτηριστικής κορυφής της δόνησης έκτασης των θειομάδων προς χαμηλότερους κυματάριθμους (από τους 1070 cm-1 περίπου στους 1062-1064 cm-1) και η εμφάνιση μιας κορυφής στους 1072 cm-1, σε σχέση με τα αντίστοιχα φάσματα των προτύπων ουσιών, στα φάσματα όλων των μιγμάτων που μελετήθηκαν. Η μετατόπιση της συγκεκριμένης κορυφής αποτελεί ένδειξη αλληλεπίδρασης μεταξύ των δύο ουσιών και καταδεικνύει το σημαντικό ρόλο των θειομάδων των γλυκοζαμινογλυκανών στις αλληλεπιδράσεις τους με τη συγκεκριμένη πρωτεΐνη. Τα αποτελέσματα της φασματοσκοπίας Raman βρίσκονται σε συμφωνία με εκείνα που προκύπτουν από την τεχνική της Διαφορικής Θερμιδομετρίας Σάρωσης (DSC), καθώς τα θερμογραφήματα DSC των μιγμάτων θειικής χονδροϊτίνης-κολλαγόνου τύπου Ι είναι διαφορετικά από εκείνο του μίγματος που προέκυψε από την ανάμιξη των δύο συστατικών, υποδεικνύοντας την ύπαρξη αλληλεπίδρασης μεταξύ των δύο ουσιών. Με την τεχνική της φασματοσκοπίας Raman διαπιστώθηκε ότι το κολλαγόνο τύπου Ι έδειξε μεγαλύτερη «χημική προτίμηση» προς την ηπαρίνη σε σχέση με τη θειική χονδροϊτίνη, ενώ το κολλαγόνο τύπου ΙΙ προτίμησε να αλληλεπιδράσει με τη θειική χονδροϊτίνη. / Collagen and glycosaminoglycans (GAGs) co-exist as major constituents of the extracellular matrix (ECM) in a variety of tissues. Collagen type I is the most abundant protein in the human body, whereas another important type of collagen is type II, which forms the extracellular matrix of cartilage and other tissues. Glycosaminoglycans are negatively charged polysaccharides that occur as a structural component of proteoglycans and can be divided in four major groups: i) chondroitin sulfate and dermatan sulfate, ii) heparin and heparin sulfate, iii) keratan sulfate, and iv) hyaluronic acid. Both GAGs and collagen not only regulate a variety of cellular functions but they also seem to be involved in many pathological conditions, including cancer and joint diseases. Therefore, a more detailed investigation of the interactions between them will result in a deeper understanding of their biological function. Most common methods for identifying GAG-collagen interactions include affinity chromatography, affinity electrophoresis and fluorescence spectroscopy. Nuclear Magnetic Resonance (NMR), X-ray diffraction and Circular Dichroism (CD) provide structural data characterizing conformational changes and contact points between the interacting species. Using Isothermal Titration Calorimetry (ITC), information on the thermodynamics of glycosaminoglycan-protein interactions can be obtained. Surface Plasmon Resonance (SPR) allows the measurement of association and dissociation constants of glycosaminoglycan-protein interactions in real time. The major disadvantage of the techniques described above is the inability to identify specific chemical bonds. Other disadvantages are the long analysis time and that large amounts of the interacting substances are required. In the present work, Raman spectroscopy, a non-destructive, vibrational technique which yields information on the chemical composition of the specimen, was employed for the exploration of the interactions between collagen type I and type II and two glycosaminoglycans, chondroitin sulfate and heparin. Two sets of mixtures composed of glycosaminoglycans and each type of collagen were prepared: i) collagen type I or type II was immersed in aqueous solutions of chondroitin sulfate, heparin and a 1:1 mixture of both GAGs, and ii) GAG-collagen mixtures were obtained by blending suitable amounts of the two substances. Differential Scanning Calorimetry (DSC) was also applied on the latter mixtures. From the Raman spectra identification of vibrational frequencies of the functional groups of the above molecules, such as C-OH linkages, sulfate groups (O-SO3-, N-SO3-), N-acetyl group, carboxyl group and C-Ν linkages is possible. The prominent features arising from the Raman spectra of GAG-collagen interactions are found in the regions 800-920 cm-1, 900-1000 cm-1 and 980-1170 cm-1. Processing of the spectra of all GAG-collagen mixtures has revealed that a shift of the most characteristic vibration of chondroitin sulfate’s and heparin’s spectrum from 1070 cm-1 to 1062-1064 cm-1, while a vibration at approximately 1072 cm-1 emerges. The sulfate band shift is indicative of an interaction between collagen and glycosaminoglycans and depicts the important role of the sulfate group of glycosaminoglycans in the interactions with the protein. This observation was in accordance with the results from Differential Scanning Calorimetry (DSC), which demonstrated an interaction between collagen and chondroitin sulfate. A stronger preference of collagen type I to interact with heparin rather than chondroitin sulfate and of collagen type II to interact with chondroitin sulfate was also observed.

Page generated in 0.0372 seconds